
Geoderma 160 (2011) 271–280

Contents lists available at ScienceDirect

Geoderma

j ourna l homepage: www.e lsev ie r.com/ locate /geoderma
Influence of geographical location, crop type and crop residue cover on bacterial and
fungal community structures

William C. Rice ⁎, Prasanna H. Gowda
Conservation and Production Research Laboratory, USDA, ARS, Bushland, TX 79012-0010, United States
Abbreviations: PCR, polymerase chain reaction; DG
electrophoresis; PCA–DA, principal components analysis
overall rates of correct classification.
⁎ Corresponding author. Tel.: +1 806 356 5706; fax:

E-mail address: William.rice@ars.usda.gov (W.C. Ric

0016-7061/$ – see front matter. Published by Elsevier
doi:10.1016/j.geoderma.2010.09.003
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 25 January 2010
Received in revised form 4 August 2010
Accepted 6 September 2010
Available online 17 December 2010

Keywords:
Biogeography
Microbial assemblages
Habitat
Province
DGGE-PCR
The objective of this studywas to evaluate the effects of geographical location, crop type, and residue coverage
on soil microbial assemblages in Sherm soil from 30 geographically separate commercial fields in Ochiltree
and Moore Counties of Texas. Crop residue coverage was derived from spectral data and used to classify
sorghum and wheat fields into high and low crop residue categories. Denaturing gradient gel electrophoresis-
polymerase chain reaction (DGGE-PCR) assays employing universal PCR primers that target prokaryotic and
eukaryotic ribosomal genes were used to evaluate microbial community structure. An interaction between
geographical location, crop type, and crop residue coverage was observed. A 50% similarity level was observed
for overall bacterial community structure as determined using 16S data while a 59% similarity was observed
for overall fungal community structure using 18S data. For the 16S composite dataset, high overall rates of
correct classification (ORCC) were observed based on the user-defined groups of county by crop by residue
coverage. A similar result was observed for fungal community structure using primer set FR1GC-FF390. Our
data support the hypothesis that there are multiple provinces and multiple habitats that govern the
assemblage of free-living taxa within the Moore–Ochiltree County agroecosystem. An ancient microbial
assemblage based on historical features was identified and is still visible despite the presence of different crop
types and cropping systems (Conventional vs. Conservation). For sorghum and wheat grown in Moore and
Ochiltree Counties, a two-province state (Moore and Ochiltree Counties) was defined comprised of four
habitats i.e. sorghum and wheat habitats influence by degree of residue coverage. Crop type and residue
coverage can affect microbial assemblages within a geographical context.
GE, Denaturing gradient gel
–discriminant analysis; ORCC,
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1. Introduction

Soils provide a complex microhabitat for harboring diverse groups
of microorganisms (Borneman et al., 1996; Brodie et al., 2003) and a
number of studies point to the inherently complex compositional
structure of soil microbial communities (Gelsomino et al., 1999; Lord
et al., 2002; Viaud et al., 2000). The interaction of soil type, crop type,
agroecosystem, and land management practices may influence
agricultural bacterial communities (Buckley and Schmidt, 2003;
Girvan et al., 2003; Johnson et al., 2003; Steenwerth et al., 2002).
Microorganisms in soil play key roles in the decomposition of plant
organic matter, nutrient cycling, and soil structure. Fungi also are
important in ecosystem functions such as organic matter decompo-
sition processes (Lynch and Thorn, 2006; Thorn, 1997). Fungal
community structure in relationship to a variety of grassland
communities has been investigated (Jumpponen et al., 2005; de
Souza et al., 2004; Oehl et al., 2003). Influences on fungal community
structure and diversity by soil chemistry and structure (Gleeson et al.,
2005); floristic composition; and agroecosystem manipulations such
as crop rotation (Larkin, 2003), land management (Oehl et al., 2003),
fertilizer usage (Jumpponen et al., 2005), and pesticide application
(Girvan et al., 2004) have been demonstrated. The worldwide fungal
community has been conservatively estimated to comprise approx-
imately 1.5 million species (Hawksworth and Rossman, 1997).

Strong interest exists in understanding the environmental and
geographical influences on the structure of terrestrial and aquatic
microbial communities (Fierer and Jackson, 2006; Green et al., 2008).
However, literature on the relative contributions of geographical
distance and environmental habitat is limited and evolving. According
toMartiny et al. (2006), habitat is defined as a suite of abiotic and biotic
characteristics whereas province is defined as a region in which the
biotic composition reflects the legacies of historical events. A number of
hypotheses regarding the biogeographical distribution of microbial
communities and a proposed framework for investigating microbial
assemblages have recently been reviewed (Martiny et al., 2006; Fierer,
2008). Four hypotheses regarding the distribution of microorganisms
over habitat and province were proposed. These include: a) null
hypothesis — microorganisms are randomly distributed over space
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(microorganisms experience only one habitat and one province); b) the
biogeography ofmicroorganisms reflects the influence of contemporary
environmental variation (multiple habitats within a single province);
c) all spatial variations are due to the lingeringeffects of historical events
(multiple provinces but only one habitat); and d) the distributions of
microbial taxa, like those of macroorganisms, reflect the influences of
bothpast events and contemporary environmental conditions (multiple
habitats and multiple provinces) (Martiny et al., 2006).

Evidence from a number of studies supports the idea that free-living
microbial taxa exhibit biogeographic patterns. Non-random distribu-
tions of free-living microbial taxa have been identified in geographical
scales ranging from 0.002 to 20,000 km. A null hypothesis that
microorganisms are randomly distributed over space was clearly
rejected in two studies (Cho and Tiedje, 2000; Oda et al., 2003). Non-
random distributions of fluorescent pseudomonads were identified i.e.,
genetic distance correlated with geographical distance (Cho and Tiedje,
2000) at a scale of 20,000 km while genetic differences were identified
in purple non-sulphur bacteria over a 10-meter transect (Oda et al.,
2003). Non-random distributions of free-living microbial taxa have
been identified indiverse ecosystems suchas soil (Fulthorpeet al., 1998;
Sliwinski and Goodman, 2004a,b), marine (Riemann and Middelboe,
2002; Pinhassi et al., 2003), agricultural soil (Franklin and Mills, 2003),
river plume (Crump et al., 2004; Troussellier et al., 2002), salterns
(Casamayor et al., 2002), groundwater (Franklin et al., 1999), and salt-
and fresh-water marsh (Franklin et al., 2002; Oda et al., 2003). The
distribution of free-living microbial taxa in these ecosystems has been
correlated with geographical distance (Cho and Tiedje, 2000; Oda et al.,
2003), latitude (Fulthorpe et al., 1998), depth (Garcia-Martinez and
Rodriguez-Valera, 2000), salinity (Casamayor et al., 2002; Crump et al.,
2004), oxygenation zone (Franklin et al., 1999) and forest vegetation
(McArthur et al., 1988) for example. Elevation has been shown to
influence patterns of bacterial diversity in the B soil horizon indepen-
dent of plant diversity (Bryant et al., 2008). A variety of analytical
methods were used to discern these influences. These include well
accepted 16S analysis using denaturing gradient gel electrophoresis
(DGGE), terminal restriction fragment length polymorphism (TRFLP),
single strand conformation polymorphism (SSCP), restriction fragment
length polymorphism (RFLP) and amplified rDNA restriction analysis
(ARDRA), 16S/ITS (intergenic transcribe spacer) DNAsequence analysis,
rep-PCR, random amplification of polymorphic DNA (RAPD) and
amplified fragment length polymorphism (AFLP) assays, isolate
allozymes and sole carbon source utilization studies.

All of the above-mentioned studies would reject the null
hypothesis but lend little information regarding the relative contri-
bution of spatial variability in microbial distribution and assemblages
due to environmental conditions or historical contingencies, thus
making it difficult to resolve between the remaining hypotheses.
Resemblance matrices for biogeographical analyses were proposed as
a potential method to assess the issues of relative contributions from
environmental conditions or historical contingencies (Martiny et al.,
2006). This requires carefully chosen sampling sites with adequate
replicates to statistically assess contributions from province(s)
and habitat(s) on microbial assemblages. At the time of the Martiny's
review ten studies were identified that allowed definition
of environmental segregation and biogeographical provincialism
(Martiny et al., 2006). Some of these sites involve hot springs (Papke
et al., 2003;Whitaker et al., 2003), lakes (Yannarell and Triplett, 2005;
Reche et al., 2005) and soil (Green et al., 2004). Methods employed in
these studies include 16S/ITS sequence, multi-locus sequencing (MLS)
of isolates and DGGE of 16S rDNA. Recognition of divergence between
isolated populations is also dependent upon specific DNA analysis
methods employed to detect independent evolutionary events at the
appropriate time scale. Bacterial life is estimated to have appeared
between three and four billion years ago and thus provides this
geological timescale via the 16S rRNA gene. The 16S rRNA evolves
slowly over geological time and has been effective in revealing ancient
biogeographical differentiation for a number of but not necessarily all
microbial species (reviewed in Whitaker, 2006). The prokaryotic 16S
rDNA gene has been proven to be a robustmolecular chronometer that
has greatly facilitatedmicrobial taxonomy and allows for evaluation of
microbial diversity and species richness in a variety of ecological
systems (Hill et al., 2003). Thus ancient microbial assemblages are
reflected in 16S rRNA composition.

The objective of this study was to evaluate geographical distance
and climatic factors along with the effects of crop type and residue
coverage on soil microbial populations. Both Moore and Ochiltree
Counties are in the Panhandle region of Texas and soils in both
counties are comprised of a silty clay Sherm soil series, thus
potentially identifying a single habitat based on soil type. However
Moore and Ochiltree Counties are geographically distinct with respect
to elevation, rainfall, and temperature profiles and are separated by a
distance of approximately 48 to 220 km from their closest to most
distant points (Fig. 1) and may potentially represent more than one
province. We defined groups such as county, crop type and residue
coverage (potential habitats) and combinations of these groups
(county by crop type, county by residue coverage and crop type by
residue coverage) to create resemblance matrices to evaluate the
influences of geographical factors, crop type and residue coverage on
overall microbial community structure. Hierarchal cluster analysis,
principal component analysis with discriminant and group separation
analysis using two procedures were used to visualize and to assess the
significance of interactions between crop type, crop residue coverage
and geographical distance on overall microbial assemblages.
2. Methods

2.1. Field sampling

Field survey and soil samples were obtained from 14 field sites in
Moore County and 16 field sites in Ochiltree County over the course of
one day during the 2005 planting season. Field data including tillage
type, soil moisture content using Time Domain Reflectometry, and soil
samples for measuring organic and nitrogen content was conducted
on 10May 2005 in Ochiltree and on 17May 2005 inMoore Counties as
part of a regional tillage mapping study. More information on the data
collection is provided in Gowda et al. (2008). Moore County is located
in the north-central part of the Texas High Plains and has a total area
of 236,826 ha and corn, sorghum, and wheat are the major crops in
the county. The area of Ochiltree County is about 234,911 ha and
sorghum, wheat and corn are the major crops in the county. Crop
water needs are supplemented with groundwater from the underly-
ing Ogallala Aquifer. Conventional tillage practice in the study area
usually consists of offset disk in the fall. Common conservation tillage
practice are no plowing in the fall and sweep or disk plowing at
planting that leaves at least 30% of the surface covered with crop
residue after planting. Moore County has a mean elevation range of
1006 to 1097 m while for Ochiltree the mean elevation is 914 m
(Fig. 1). Annual average precipitation is about 481 mm and 562 mm
for Moore and Ochiltree Counties, respectively. Typical planting dates
for major crops in the study area vary from the secondweek of April to
the third week of May. July average temperature for Ochiltree is
26.6 °C while for Moore it is 25.2 °C. For January, the average
temperatures are 1.3 °C and 3.3 °C for Moore and Ochiltree Counties,
respectively. Nearly all of the crop land in both Moore and Ochiltree
Counties have nearly level plain to 0.5% with Sherm series (fine,
mixed, superactive, mesic Torrertic Paleustolls) (USDA-SCS, 1975).
Sherm association covers more than 50% of Moore and Ochiltree
counties mainly croplands and Sherm soils make up 90% of the
association. Small areas of Donley, Dalhart, Dumas, Harney, Ness, and
Sunray soils cover the rest. Not surprisingly, there is not much
variation in the organic matter and nitrogen content (Table 1).



Fig. 1. Geospatial map indicating the location of field sampling sites in Moore and Ochiltree counties.
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Five samples from the top 5 cm of soil were composited for each
field to minimize sample variation within a field site. Soils were
ground and oven dried at 60 °C prior to chemical analysis and DNA
Table 1
Field characteristics.

County Crop Field
no

Tillage* Residue
cover (%)

Soil water
content (%)

N (%) C (%)

Moore Sorghum 33 0 10.8 0.16 0.13 1.36
Moore Sorghum 34 0 16 0.13 0.17 1.52
Moore Sorghum 38 0 20.4 0.28 0.16 1.59
Moore Sorghum 29 1 34 0.23 0.13 1.48
Moore Sorghum 4 1 38.1 0.25 0.11 1.17
Moore Sorghum 7 1 45.7 0.19 0.1 0.93
Moore Wheat 11 0 3.2 0.27 0.16 1.43
Moore Wheat 14 0 14.2 0.11 0.13 1.27
Moore Wheat 21 0 18.7 0.27 0.12 1.26
Moore Wheat 10 0 23.7 0.17 0.12 1.12
Moore Wheat 32 1 60.8 0.16 0.18 1.87
Moore Wheat 35 1 67.1 0.18 0.23 2.28
Moore Wheat 5 1 75.6 0.06 0.14 1.56
Moore Wheat 37 1 82.1 0.11 0.13 1.37
Ochiltree Sorghum 35 0 2 0.26 0.123 1.42
Ochiltree Sorghum 42 0 9.1 0.16 0.124 1.32
Ochiltree Sorghum 21 0 11.5 0.17 0.121 1.21
Ochiltree Sorghum 19 0 13.4 0.21 0.11 1.13
Ochiltree Sorghum 7 0 16.4 0.16 0.12 1.36
Ochiltree Sorghum 29 1 42.4 0.25 0.112 1.19
Ochiltree Sorghum 17 1 67.6 0.25 0.135 1.46
Ochiltree Sorghum 2 1 68.5 0.21 0.12 1.27
Ochiltree Wheat 26 0 6.1 0.02 0.149 1.48
Ochiltree Wheat 5 0 23.2 0.2 0.12 1.37
Ochiltree Wheat 4 0 26.9 0.12 0.13 1.36
Ochiltree Wheat 3 1 40.9 0.19 0.13 1.43
Ochiltree Wheat 16 1 45.8 0.26 0.157 1.53
Ochiltree Wheat 22 1 54.6 0.21 0.161 1.49
Ochiltree Wheat 6 1 62.3 0.19 0.12 1.27
Ochiltree Wheat 1 1 69.5 0.25 0.11 1.04

1 — Conservation tillage, 0 — Conventional tillage.
extraction. Aliquots used for subsequent DNA extraction were stored
at −20 °C until they were extracted. Each field was photographed
with a digital camera and a digital infrared camera to generate a
composite image (Multispec™) to derive crop residue coverage.
Multispec™1 analyses created residue coverage values ranging from 5
to greater than 60% for both sorghum and wheat crops. Residue
coverage less than 25% was assigned to low-residue classification
while residue coverage greater than 37%was assigned to high-residue
coverage for both sorghum and wheat crops (Table 1).
2.2. DNA extraction

DNA was extracted using the UltraClean Soil DNA Isolation Kit
according to the manufacturer's protocol (Mo-Bio Laboratories,
Carlsbad, CA1). DNA was quantified using agarose gel electrophoresis.
2.3. Prokaryotic PCR

2.3.1. PCR primer set F341GC2 and R518
PCR amplifications of the V3 region of the 16S rRNA genes were

carried out in a 50 μL reaction mixture containing 10× PCR Buffer,
2.0 mM MgCl2 final concentration, 200 μM of each dNTP, 2.5 U
JumpStart Taq DNA Polymerase (Sigma-Aldrich, St. Louis, MO),
20 pmol each of F341GC2 and R518 (Muyzer et al., 1993), and 25 ng
of sample DNA. PCR was performed using the following parameters:
initial denaturation at 95 °C for 5 min, 30 cycles of 95 °C for 1 min,
60 °C for 30 s, 72 °C for 1 min, final extension at 72 °C for 7.5 min.
Three sets of PCR products were concentrated into 30 μL using the
MinElute PCR purification kit (Qiagen, Valencia, CA).
1 Mention of trade names or commercial products in this article is solely for the
purpose of providing specific information and does not imply recommendation or
endorsement by the U.S. Department of Agriculture.
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2.3.2. Primer set 1092F and 1392RGC
PCR amplifications of the V7 region of the 16S rRNA genes were

carried out in a 50 μL reaction mixture containing 10× PCR Buffer,
2.0 mM MgCl2 final concentration, 200 μM of each dNTP, 2.5 U
JumpStart Taq DNA Polymerase, 50 pmol each of 1092F and 1392R
(Sun et al., 2004), and 25 ng of sample DNA. PCR was performed using
the following parameters: initial denaturation at 95 °C for 2 min,
9 cycles of touchdown PCR at 95 °C for 30 s, 56 °C for 1 min,
decreasing by 1 °C every cycle, and 72 °C for 40 s; 22 cycles of 95 °C
for 30 s, 47 °C for 30 s, 72 °C for 1 min, final extension at 72 °C for
7.5 min. Two sets of PCR products were concentrated into 30 μL using
the MinElute PCR purification kit.

2.4. Eukaryotic PCR

2.4.1. FF390 and FR1-GC
PCR amplifications of the 18S rRNA genes were carried out in a

50 μL reaction mixture containing of 10× PCR Buffer, 1.5 mM MgCl2
final concentration, 200 μM of each dNTP, 2.5 U JumpStart Taq DNA
Polymerase, 20 pmol each of FF390 (CGATAACGAACGAGACCT) and
FR1-GC (AICCATTCAATCGGTAIT) (Kowalchuk and Smit, 2004), and
25 ng of sample DNA. PCR was performed using the following
parameters: initial denaturation at 95 °C for 2 min, 8 cycles of
touchdown PCR at 95 °C for 30 s, 55 °C for 30 s, decreasing by 2 °C
every 2 cycles, and 72 °C for 1 min; 27 cycles of 95 °C for 30 s, 47 °C for
30 s, 72 °C for 1 min, final extension at 72 °C for 7.5 min. Two sets of
PCR products were concentrated into 30 μL using the MinElute PCR
purification kit.

2.5. DGGE analysis

DGGE analysis was performed using the DCode System (BioRad,
Hercules, CA). Profiles of amplified 16S rRNA sequences were
produced on 6.5% polyacrylamide gels with a 30–60% denaturing
gradient (100% denaturant was 7 M urea and 40% [vol/vol] deionized
formamide). Approximately 1.0–1.5 μg of DNA was loaded into the
wells. The Low Molecular Weight DNA Ladder (Bioline, Randolph,
MA) was used as a standard in combination with an amplicon
generated from E. coli K12 DNA with the primer set F341GC2-R518.
Gels were run for 16 h at 50 V at 60 °C. DNA fragments were stained
for 30 min using SYBR Green I (Invitrogen, Eugene, OR).

2.6. Image and data analysis

Digital images of the gels were obtained using a Kodak Image
Station 4000MM (Eastman Kodak Company, New Haven, CT). All
digital images were processed using various algorithms within the
Bionumerics v.5 software package (Applied Maths, Austin, TX).
Processed images yielded normalized DNA fingerprints (based on
reference DNAs) thus allowing for inter-gel comparison of various
community DNA samples. For each fingerprint type, a whole-pattern
(both the number of bands and the intensity of the bands) analysis
was completed with the Pearson coefficient (creating a Pearson
product-moment correlation). Cluster analysis on DNA fingerprint
patterns was conducted using the unweighted paired-group method
using mathematical averages (UPGMA) to generate a dendrogram
(significant clusters were determined based on a cluster cutoff
function — Point-bisectional correlation) using the Pearson coeffi-
cient. An ORCC analysis was performed on the assigned groups using
bootstrap analysis using the Jackknife method with ties assigned to
their own group. In this method, a sample is randomly deleted and the
experiment is reanalyzed. This can be done by calculating the average
similarity with each group or finding the maximum similarity with
each group. The assessment of significance (internal stability) of an
assigned group will be influenced if average and maximum similarity
values of a group differ substantially. Both procedures were done for
all entries to more clearly visualize the internal stability of each group
assignment. This simulation then allows for a determination of the
correct rate of classification of the individual groups and for an overall
rate of correct classification (ORCC) of the various datasets based on
user-defined groups. These results were reported in a group
separation matrix and it must be noted that values in the matrix
table were not reciprocal (see the following discussion). Band
matching function and group assignment based on county, crop
type and residue coverage, and group combinations (county by crop
type, county by residue coverage and crop type by residue coverage)
were conducted prior to principal components analysis–discriminant
analysis (PCA–DA).

3. Results

3.1. Soil sample characteristics

Soil tillage, residue coverage, water, N and C content are presented
in Table 1. The organic matter and nitrogen content in the study fields
varied from 0.93 to 2.28% and 0.1 to 0.23%, respectively. The soil
moisture content at the time of data collection varied from 0.02 to
0.27% with an average value of 0.19%.

3.2. 16S composite dataset analysis

3.2.1. Cluster analysis
A UPGMA derived dendrogram based on a 16S composite dataset

indicated a bacterial community composition with an overall
similarity of 50.4% (Fig. 2). Two main DNA similarity groups with
one outlying cluster were determined (based on the number of
clusters identified with greater than 60% similarity). Two significant
subclusters (greater than 69% similarity) were present within one of
the main clusters. Inspection of the dendrogram suggests an influence
of county, crop type and residue coverage on overall microbial
community composition. Groupings by county, crop type and residue
coverage and county by crop type, county by residue coverage and
crop type by residue coverage were contained within significant
clusters at similarity levels approaching 70%.

3.2.2. County, crop type, and residue coverage
User-defined groups of county, crop type, and residue coverage

were then assigned as group variables to more clearly define the
influence of geographical location, crop type and tillage management
on overall bacterial community composition. Two further methods of
analysis were then applied to more clearly visualize the effect of the
group variables on bacterial community structure. PCA–DA using
county as the group variable revealed two groups with slight overlap
of several members of each group (data not shown). The user-defined
groups (county, crop type and residue coverage) yielded high ORCC
(range, 83.3 to 100%) and a significant assessment using the
maximum similarity method (Table 2). The average similarity
resulted in lower ORCC (range, 56.7 to 86.7%) and evaluation of
residue coverage using this method resulted in a non-significant
assessment with 57% of the Moore samples assigned as Ochiltree
samples. Sorghum was the crop type with the highest classification
score (100% and 92.9% for the average- and maximum similarity
methods) while residue coverage resulted in cross assignment using
both methods (Table 2).

3.2.3. County by crop type
User-defined groups of county by crop type, county by residue

coverage, and crop type by residue coverage were then assigned as
group variables to more clearly define the influence of location, crop
type and crop management on overall bacterial community compo-
sition. PCA–DA of the 16S composite dataset, using county by crop
type (i.e., Moore-sorghum, Moore-wheat, Ochiltree-sorghum, and
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Fig. 2. A UPGMA derived dendrogram from cluster analysis of a similarity matrix calculated using the Pearson coefficient. The composite dataset used in this analysis was derived
from DGGE-PCR experiments conducted on soil samples from 30 sites using 16S primer sets 341GC2-518R and 1092F-1392R. Dark solid lines indicate the location of significant
clusters within the overall dendrogram.

275W.C. Rice, P.H. Gowda / Geoderma 160 (2011) 271–280
Ochiltree-wheat) as the classification variable revealed four well-
defined groups (Fig. 3a). Moore-sorghum was contained entirely
within the lower right-hand quadrant while Moore-wheat was
located mainly in the upper left-hand quadrant. Ochiltree-sorghum
and Ochiltree-wheat were located in two well-defined although
Table 2
Composite 16S dataset group separation scores based on a) county, b) crop type and c)
residue coverage.

Group Ave-Sim Group Max-Sim

Countya Moore Ochiltree County Moore Ochiltree
Moore 42.9 0.0 Moore 100.0 0.0
Ochiltree 57.1 100.0 Ochiltree 0.0 100.0
Crop typeb Sorghum Wheat Crop type Sorghum Wheat
Sorghum 100.0 25.0 Sorghum 92.9 18.8
Wheat 0.0 75.0 Wheat 7.1 81.3
Residue coveragec Low High Residue coverage Low High
Low 53.3 40.0 Low 93.3 26.7
High 46.7 60.0 High 6.7 73.3

a OC% 73.3, X2; 8.571, p=0.003, OC% 100.0, X2; 30.000, pb0.001.
b OC% 86.7, X2; 17.500, pb0.001, OC% 86.7, X2; 16.476, pb0.001.
c OC% 56.7, X2; 0.536, p=0.464, OC% 83.3, X2; 13.889, pb0.001.
closely related groups. Moore-sorghum was the most tightly grouped
variable and along with Moore-wheat had the highest correct rate of
classification score of 100.0% with an ORCC of 86.7%, (Chi-square
68.00; pb0.001) analyzed using the maximum similarity procedure
(Table 3). Ochiltree-wheat was the least correctly classified group
(correct classification, 62.5%) while being assigned within the
Ochiltree-sorghum group 37.5% of the time. Slightly lower ORCC
values were observed using the average similarity procedure which
gave an ORCC of 73.3% (Chi-square 47.14; pb0.001, data not shown).

3.2.4. County by residue
PCA evaluation of the 16S composite dataset using county by

residue as the grouping variable revealed two distinct groupings of
Moore-low and -high residue field sites within the ordination plot
whereas Ochiltree-low and -high residue field sites were contained
within an overlapping group located primarily in the lower left-hand
quadrant (Fig. 3b). The significance of this grouping variable yielded
different results depending whether analyzed by using either the
average or maximum similarity method. Moore-low residue was
correctly identified 100% of the time followed by Moore-high and
Ochiltree-low residue (85.7%) and Ochiltree-high residue (62.5%)

image of Fig.�2
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Table 3
Composite 16S group separation tables based on maximum similarity method for a)
county by crop type, b) county by residue coverage and c) crop type by residue
coverage.

County-crop typea M-S O-S M-W O-W

Moore-Sorghum (M-S) 100 0 0 0
Ochiltree-Sorghum (O-S) 0 87.5 0 37.5
Moore-Wheat (M-W) 0 0 100 0
Ochiltree-Wheat (O-W) 0 12.5 0 62.5

County-residue coverageb O-L M-L O-H M-H

Ochiltree-low (O-L) 87.5 0 37.5 0
Moore-low (M-L) 0 100 0 14.3
Ochiltree-high (O-H) 12.5 0 62.5 0
Moore-high (M-H) 0 0 0 85.7

Crop type-residue coveragec W-L S-L S-H W-H

Wheat-low (W-L) 100 0 0 0
Sorghum-low (S-L) 0 85.7 14.3 37.5
Sorghum-high (S-H) 0 0 85.7 0
Wheat-high (W-H) 0 14.3 0 62.5

a OC% 86.7, X2: 68.00, pb0.001.
b OC% 83.3, X2: 60.50, pb0.001.
c OC% 83.3, X2: 61.29, pb0.001.
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using the maximum similarity method (Table 3) that gave an ORCC of
83.3% (Chi-square; 60.5, pb0.001). The average similarity method
indicates that Moore-high residue is incorrectly assigned (0.0%) to its
own group. Since this zero value is present on the diagonal of the
matrix, it is not possible to obtain a Chi-square score to assess the
significance of this assessment using the average similarity method.
3.2.5. Crop type by residue
PCA ordination plots of crop type by residue analysis of the

composite 16S dataset reveal that wheat- and sorghum-low residue
field sites were contained within two well-resolved groups while
there was an overlap of the wheat and sorghum-high residue field
sites (Fig. 3c). A similar assessment of the internal stability of this
group assignment was obtained using either the average similarity
methodwhich yielded an ORCC of 73.3% (Chi-square; 46.33, pb0.001)
or the maximum similarity method leading to an ORCCORCC of 83.3%
(Chi-square; 61.29, pb0.001). However there were some differences
in the correct rates of classification of the various groups. Wheat-low
residuewas correctly assigned 100% of the time followed by sorghum-
low and -high residue groups (85.7%) and wheat-low residue (62.5%)
using the maximum similarity method (Table 3) whereas wheat-low
residue was correctly assigned 87.5% of the time while sorghum-low
residue was correctly assigned 100% of the time using the average
similarity method. Both sorghum- and wheat-high residue had lower
rates of correct classification in the average similarity method (71.4
and 37.5%, respectively) than the maximum similarity method (85.7%
and 62.5%, respectively) with wheat-high residue being assigned
37.5% of the time to sorghum-high residue.
Fig. 3. a) PCA of the 16S composite dataset with the user-defined groups of county by
crop type. Legend as follows: diamond — Moore-wheat, circle — Moore-sorghum,
cylinder — Ochiltree-wheat and star — Ochiltree-sorghum. Explained variation;
X=52.2%, Y=27.5%. b) PCA of the 16S composite dataset with the user-defined
groups of county by residue coverage. Legend as follows: diamond — Ochiltree-
Conservation tillage (N30%), circle — Ochiltree-Conventional tillage (b30%), cylinder —
Moore-Conservation tillage (N30%), and star — Moore-Conventional tillage (b30%).
Explained variation; X=38.7%, Y=33.5%. c) PCA of the 16S composite dataset with the
user-defined groups of crop type by residue coverage. Legend as follows: diamond —

sorghum-high, star — sorghum-low, cylinder — wheat-high and circle — wheat-low
residue. Explained variation; X=41.4%, Y=30.8%.



Fig. 4. A UPGMA derived dendrogram based on a similarity matrix determined from a cluster analysis using the Pearson coefficient. The dendrogram was determined from PCR
reactions using fungal specific 18S primers FR1GC and FF390 in experiments from 30 sample sites. Dark solid lines indicate the location of significant clusters within the overall
dendrogram.

Table 4
18S dataset group separation scores based on a) county, b) crop type and c) residue
coverage.

Group Ave-Sim Group Max-Sim

Countya Moore Ochiltree County Moore Ochiltree
Moore 100.0 62.5 Moore 78.6 12.5
Ochiltree 0.0 37.5 Ochiltree 21.4 87.5
Crop typeb Sorghum Wheat Crop type Sorghum Wheat
Sorghum 92.9 50.0 Sorghum 100.0 18.8
Wheat 7.1 50.0 Wheat 0.0 81.3
Residue coveragec Low High Residue coverage Low High
Low 80.0 26.7 Low 86.7 20.0
High 20.0 73.3 High 13.3 80.0

a OC% 66.7, X2; 6.563, p=0.010, OC% 83.3, X2; 13.274, pb0.001.
b OC% 70.0, X2; 6.531, p=0.011, OC% 90.0, X2; 20.074, pb0.001.
c OC% 76.7, X2; 8.571, p=0.003, OC% 83.3, X2; 13.393, pb0.001.
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3.3. Fungal community structure FR1GC-FF390 dataset

3.3.1. Cluster analysis
An overall fungal community structure with a similarity of 58.8%

was observed based on analysis of fungal community composition
using 18S fungal specific primers FR1GC and FF390 (Fig. 4). One large
significant cluster comprised of several smaller clusters was observed
with other insignificantly linked significant subclusters also observed.
An interaction of county, crop type and residue coverage on overall
fungal community structure was suggested, analogous to that seen
with overall bacterial community structure based on ribosomal data.

3.3.2. County, crop type, and residue coverage
PCA–DA using county as the group variable revealed three groups

with overlap of several members of each county present within two
groups (data not shown). The user-defined groups of county, crop
type and residue coverage gave an ORCC ranging from 83.3 to 90% and
a significant assessment using the maximum similarity method
(Table 4). Sorghum was the only correctly classified crop type based
on the maximum similarity method whereas Moore County was
correctly assigned 100% of the time based on the average similarity
method. The average similarity method resulted in a lower ORCC
(range, 66.7 to 76.7%) and a higher number of cross assignment of
members from one group to the other group. Both high- and low-
residue members were misclassified using both average and maxi-
mum similarity methods (Table 4).

3.3.3. County by crop type
An ordination plot based on PCA of 18S data using county by crop

type as group variables revealed three well-resolved groups (Fig. 5a).



a

b

c

Table 5
Fungal 18S group separation tables based on maximum similarity method for a) county
by crop type, b) county by residue coverage and c) crop type by residue coverage.

County-crop typea M-S O-S M-W O-W

Moore-Sorghum (M-S) 83.3 0 0 0
Ochiltree-Sorghum (O-S) 16.7 100 25 12.5
Moore-Wheat (M-W) 0 0 75 25
Ochiltree-Wheat (O-W) 0 0 0 62.5

County-residue coverageb O-L M-L O-H M-H

Ochiltree-low (O-L) 87.5 14.3 0 0
Moore-low (M-L) 0 71.4 25 14.3
Ochiltree-high (O-H) 12.5 14.3 50 0
Moore-high (M-H) 0 0 25 85.7

Crop type-residue coveragec W-L S-L S-H W-H

Wheat-low (W-L) 75 0 0 0
Sorghum-low (S-L) 12.5 85.7 28.6 12.5
Sorghum-high (S-H) 12.5 14.3 71.4 0
Wheat-high (W-H) 0 0 0 87.5

a OC% 80.0, X2: 54.48, pb0.001.
b OC% 73.3, X2: 42.78, pb0.001.
c OC% 80.0, X2: 53.10, pb0.001.
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Ochiltree-sorghum and -wheat were located in the upper and lower
right quadrants, while Moore-sorghum and -wheat groups were
located on the left-hand side. An ORCC of 80% (Chi-square; 54.48,
pb0.001) was observed with the maximum similarity method
(Table 5). The average similarity method failed to yield a significant
assessment due to one group variable yielding a correct rate of
classification of zero. Ochiltree-sorghumwas correctly classified 100%
of the time followed by Moore-sorghum (83.3%), Moore-wheat (75%)
and Ochiltree-wheat (62.5%).

3.3.4. County by residue
Assignment of group variable of county by residue resulted in three

well-defined although broadly dispersed groups visible in the
ordination plot based on the fungal 18S dataset (Fig. 5b). Moore-low
and -high residue occurred in one groupwhileOchiltree-low and -high
residue sites were located in two large groups with one member of
each classification present in the opposite group. This observation is
supported by assessment of the internal stability of this group
assignment by using both the average and maximum similarity
methods (Table 5). An ORCC of 63.3% (Chi-square; 30.41, pb0.001)
was observed for the average similarity procedure whereas for the
maximum similarity procedure, an ORCC was 73.3% (Chi-square;
42.78, pb0.001). Moore-low residue was correctly classified 100% of
the time using the average similarity method while Ochiltree-low
residue was correctly classified 87.5% of the time with the maximum
similarity method.

3.3.5. Crop type by residue
Assignment of group variable of crop type by residue resulted in

discernable although well-dispersed groups visible in the ordination
plot based on fungal 18S dataset (Fig. 5c). This observation is
supported by assessment of the internal stability of this group
assignment by using both the average and maximum similarity
Fig. 5. a) PCA of fungal DGGE-PCR analysis using primer sets FR1GC and FF390 based on
user-defined groups of county by crop type. Legend as follows: circle — Moore-
sorghum, cylinder — Moore-wheat, star — Ochiltree-sorghum, diamond — Ochiltree-
wheat. Explained variation; X=47.7%, Y=26.0%. b) PCA of fungal DGGE-PCR analysis
using primer sets FR1GC and FF390 based on user-defined groups of crop type by
residue coverage. Legend as follows: circle — Moore-low, star — Ochiltree-low,
diamond — Ochiltree-high and cylinder — Moore-high residue. Explained variation;
X=47.1%, Y=31.4%. c) PCA of fungal DGGE-PCR analysis using primer sets FR1GC and
FF390 based on user-defined groups for crop type by residue coverage. Legend as
follows: circle — wheat-low, star — sorghum-low, diamond — sorghum-high and
cylinder — wheat-high residue. Explained variation; X=36.2%, Y=34.3%.

image of Fig.�5
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methods. An ORCC of 60% (Chi-square; 30.98, pb0.001) was observed
for the average similarity procedure whereas for the maximum
similarity procedure (Table 5), an ORCC was 80% (Chi-square; 53.10,
pb0.001). Wheat-high residue was correctly classified 87.5% by the
maximum similarity method followed by sorghum-low residue
(85.7%), wheat-low residue (75%), and sorghum-high residue (71.4%).

4. Discussion

4.1. Assessment of province

Combined analysis of 16S composite dataset and the 18S data
using hierarchical clustering, PCA–DA and two group separation
analysis methods to assess the internal stability (significance) of the
assigned grouping variable(s) lends support to the idea that two
distinct provinces are present. Both dendrograms (16S and 18S)
suggested an interaction of geographical location (county), crop type
and residue coverage on overall microbial assemblages. Assignment of
the group variable county most strongly supports the idea that
Ochiltree is one province and is distinct from the province defined by
Moore County. For bacterial assemblages, Ochiltree County was
consistently assigned within its own group based on both group
separation procedures while Moore County was more frequently
assigned as an Ochiltree group member based on the average
similarity procedure (Table 2). Insight into province structure was
also provided by data on fungal assemblages. Moore County was
correctly classified 100% of the time based on the average similarity
method while members of both Moore and Ochiltree Counties were
cross assigned using the maximum similarity method (Table 4). Thus
the effect of counties (province) is not as apparent or strong on fungal
community composition as it is for bacterial composition. It may be
that the effect of province on fungal community composition is
somewhat confounded by the evolutionary timescale during which
the 18S rRNA gene has had time to evolve. Fungi are thought to have
originated between 760 million to 1.06 billion years ago (Lücking et
al., 2009) thus they clearly represent a much shorter evolutionary
timescale than that which can be revealed by the 16S rRNA bacterial
gene.

Use of county by crop type and county by residue coverage as user-
defined grouping variables was also consistent with the assessment of
Moore and Ochiltree Counties as separate provinces. Low levels of
county by group cross assignment were present thus suggesting the
presence of a historical influence onmicrobial assemblages. No county
field site was misclassified as another county (i.e. Moore as Ochiltree
or vice versa) for the county by crop type and county by residue
coverage group variables based on the maximum similarity proce-
dure. However, Ochiltree-wheat was classified as Ochiltree-sorghum
37.5% of the time and Ochiltree-sorghum was classified as Ochiltree-
wheat 12.5% of the time. For the average similarity method there were
low instances (b17%) of county misclassification.

4.2. Assessment of habitat

Crop type and residue coverage potentially represent distinct
habitats and their combination may represent four distinct habitats.
Prokaryotic and eukaryotic rDNA datasets identify crop type as
distinct habitats (Tables 2–5). Both 16S and 18S datasets support
sorghum as providing the stronger effect as ‘habitat’ based on the
analysis using both the average and maximum similarity methods.
Sorghum was correctly classified from 93 to 100% of the time with
either procedure. For the bacterial assemblage, wheat was correctly
classified 75 to 81% of the time and for the fungal assemblage, wheat
was correctly classified 50 to 81% of the time. Crop type by residue
analysis is consistent with crop type as a major habitat. Crop type by
residue coverage resulted in low instances of low- vs. high-residue
misclassification and occasional instances of cross-classifications of
sorghum-low residue to wheat-high residue, sorghum-high to
sorghum-low residue and wheat-high to sorghum-low residue.
Residue coverage was significantly assessed for both 16S and 18S
datasets by the maximum similarity method (Tables 2 and 4) and
tends to have the highest rate of cross group misclassification. Only
the fungal 18S dataset gave a significant assessment using the average
similarity method. However the bulk of the data still support the
assignment of residue coverage as a habitat feature although this
appears to be the weakest of the interactions that we have assessed
herein.

The creation of resemblance matrices (user-defined groups) and
application of hierarchical clustering, PCA–DA, and group separation
analysis using two methods to assess the internal stability (signifi-
cance) of the assigned grouping variables allows drawing conclusions
regarding the biogeographical distribution of free-living taxa within
this defined area. The slowly evolving 16S rRNA has effectively
revealed ancient biogeographical evidence over geological time. An
ancient microbial assemblage based on historical features was
identified and was still visible despite the presence of different crop
types and cropping systems (Conventional vs. Conservation) within
the same soil series. Thus the combined effects of elevation, rainfall
amount and distribution within the year, and temperature profile
differences between Moore and Ochiltree Counties over geological
time appears to and may have helped to established and may help to
maintain this feature which is indicative of province. Imposed on this
ancient assemblage are clear influences of crop type followed by
tillage practice. Cropping practices over the last decade or so in both
counties were fairly similar. Crop type along with agricultural
management practices has been documented in a number of
agricultural systems as influencing either or both the bacterial and
fungal community composition. Our data overall clearly support this
contention. For sorghum and wheat grown in Moore and Ochiltree
Counties, we have defined a two-province state comprised of four
habitats i.e. sorghum and wheat assemblages influence by residue
state.
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