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ABSTRACT

Land–atmosphere interactions play a critical role in regulating numerous meteorological, hydrological, and

environmental processes. Investigating these processes often requires multiple measurement sites repre-

senting a range of surface conditions. Before these measurements can be compared, however, it is imperative

that the differences among the instrumentation systems are fully characterized. Using data collected as a

part of the 2008 Bushland Evapotranspiration and Agricultural Remote Sensing Experiment (BEAREX08),

measurements from nine collocated eddy covariance (EC) systems were compared with the twofold objective

of 1) characterizing the interinstrument variation in the measurements, and 2) quantifying the measurement

uncertainty associated with each system. Focusing on the three turbulent fluxes (heat, water vapor, and carbon

dioxide), this study evaluated the measurement uncertainty using multiple techniques. The results of the

analyses indicated that there could be substantial variability in the uncertainty estimates because of the ad-

vective conditions that characterized the study site during the afternoon and evening hours. However, when

the analysis was limited to nonadvective, quasi-normal conditions, the response of the nine EC stations were

remarkably similar. For the daytime period, both the method of Hollinger and Richardson and the method of

Mann and Lenschow indicated that the uncertainty in the measurements of sensible heat, latent heat, and

carbon dioxide flux were approximately 13 W m22, 27 W m22, and 0.10 mg m22 s21, respectively. Based on

the results of this study, it is clear that advection can greatly increase the uncertainty associated with EC flux

measurements. Since these conditions, as well as other phenomena that could impact the measurement un-

certainty, are often intermittent, it may be beneficial to conduct uncertainty analyses on an ongoing basis.

1. Introduction

The land–atmosphere interface lies at the nexus of

the complex web of interconnections and feedbacks

linking biogeophysical and biogeochemical processes.

As a result, the exchange of mass, energy, and momen-

tum between the land surface and the atmosphere plays

a critical role in regulating numerous meteorological,

hydrological, and ecological processes. Thus, as pointed

out by French et al. (2005), among others, accurately

describing land–atmosphere interactions and their role

in subsequent processes is essential for a broad array

of applications with significant social, economic, and

environmental impacts. These applications range from

managing water and other natural resources (Neale et al.

2005; Gowda et al. 2008) to predicting agricultural pro-

ductivity (Steduto et al. 2007; Ko and Piccinni 2009) and

carbon sequestration (Svejcar et al. 2008; Alfieri et al.

2009a) to forecasting weather and climate (Chen et al.

2007).

Surface fluxes can vary substantially both spatially and

temporally due to localized differences in both surface

and atmospheric conditions. For example, Alfieri et al.

(2007) found that while evapotranspiration (ET) during

drought is strongly linked to soil moisture content, water

availability is only one of several key environmental fac-

tors that influence the moisture flux over time. Therefore,
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measurements of surface fluxes collected across the con-

tinuum of surface and atmospheric conditions are requi-

site both for investigating the underlying mechanisms of

land–atmosphere exchange processes and for devel-

oping, parameterizing, and evaluating numerical models

and remote sensing–based products (e.g., Cosh et al. 2004;

Anderson et al. 2005; LeMone et al. 2008; Alfieri et al.

2009c). For example, measurements were collected at 10

representative grassland and cropland sites during the

2002 International H2O Project (LeMone et al. 2007).

Similarly, the 12 micrometeorological stations deployed

during the 2002 Soil Moisture–Atmospheric Coupling

Experiment (SMACEX) were installed in both corn

and soybean fields (Kustas et al. 2005). Finally, a recent

study by Blanken et al. (2009) compared measurements

from alpine tundra and subalpine forest. On a larger

scale, numerous regional measurement networks, such

as AmeriFlux (Baldocchi et al. 2001) and ChinaFLUX

(Yu et al. 2006), have been developed to collect long-term

measurements across the full range of environmental

conditions and ecosystems types. A core assumption

of these networks is that measurements from the indi-

vidual field sites are representative of the larger ecosys-

tem (Baldocchi 2008; Chasmer et al. 2008).

To correctly interpret or compare measurements col-

lected at different locations or times, it is imperative that

the total uncertainty associated with the measurements

be fully characterized (Prueger et al. 2005; Meek et al.

2005; Myklebust et al. 2008). Characterizing the uncer-

tainty, however, is a difficult task because of the com-

plexity of collecting surface flux measurements and the

many potential sources of error. Businger (1986), for ex-

ample, lists 10 potential sources of uncertainty in turbu-

lent flux measurements ranging from limitations in the

sensor response and violations of the theoretical under-

pinnings of measurement techniques to random noise.

Each of these sources of uncertainty contributes to ei-

ther the random uncertainty or the systematic error. As

described by Billesbach (2011), random uncertainty re-

duces the precision of the measurement and, thereby,

confidence that the measured value represents the true

value, while systematic errors reduce the accuracy of

the measurement by introducing a bias. Although this

definition is useful, some care is needed in its applica-

tion because not all sources of systematic error have

a constant effect; these sources of error, which Moncrieff

et al. (1996) refer to as selective systematic errors, are

due to intermittent sources. Example sources of random

error include the variability and heterogeneity of the

measurement source area (Katul et al. 1999) and errors

associated with the sensors themselves (Hollinger and

Richardson 2005). An example of a source of systematic

error is the undermeasurement of the turbulent fluxes

during the night because of insufficient turbulent mixing

(Mahrt 1998).

The total uncertainty is the combination of the sys-

tematic error and random uncertainty. Because of the

potential impacts of measurement uncertainty and error

on both research and applied activities, a number of

methods have been developed to estimate these quan-

tities for surface flux measurements. One of the first of

these is the method built on the fundamental principles

of turbulent transport by Mann and Lenschow (1994) to

determine the uncertainty of airborne flux measure-

ments. This method was later modified by Hollinger and

Richardson (2005) for tower measurements collected

using the eddy covariance (EC) method. In the same

paper, they also proposed an alternate method for esti-

mating uncertainty based on the differences in the mea-

sured flux from a pair of EC systems. Most recently,

Billesbach (2011) discusses a ‘‘random shuffle’’ method

that is unique because it quantifies only the random un-

certainty.

Using a combination of these and other statistical

techniques, the nine EC systems used in the Bushland

Evapotranspiration and Agricultural Remote Sensing

Experiment (BEAREX08) were evaluated in order to

ascertain both the agreement among the measurement

systems and the total uncertainty associated with each.

Specifically, the study focused on three quantities: the

sensible heat flux (H), latent heat flux (lE), and car-

bon dioxide flux (Fc). This analysis using the data from

BEAREX08 represents a unique opportunity to char-

acterize the uncertainty of a significant number of EC

systems at once and to do so using measurements col-

lected under strongly advective conditions. As such, this

study will not only provide a better understanding of the

uncertainty associated with the measurements collected

during this one field campaign, it will also provide valu-

able guidance for understanding the uncertainty of the

EC measurements collected in many arid and semiarid

regions where advective conditions are commonplace.

The following section provides an overview of the

BEAREX08 field campaign along with a description of

the field site and data collection procedures. Section 3

discusses the statistical analysis methods, while the fourth

section discusses the results of the analysis. The final

section discusses the conclusions drawn from this study.

2. The 2008 Bushland Evapotranspiration and
Agricultural Remote Sensing Experiment

a. Overview of the field campaign

BEAREX08 was conducted from June through August

2008 at the United States Department of Agriculture-

Agriculture Research Service (USDA-ARS) Conservation
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and Production Research Laboratory (CPRL) near

Bushland, Texas (35.1838N, 102.1008W). The over-

arching goal of the field campaign was to investigate

improved methods for monitoring and characterizing

surface energy, moisture, and carbon fluxes using re-

mote sensing in irrigated agricultural environments that

have significant regional advection. To accomplish this

goal, a suite of instrumentation was deployed includ-

ing nine EC micrometeorological stations that collected

data over irrigated and dryland cotton, grassland, and

bare soil sites. Other instrumentation included airborne

flux and remote sensing platforms; a tethered sonde sys-

tem; a network of soil moisture, heat flux and tempera-

ture sensors; ground-based remote sensing instruments;

and four large precision weighing lysimeters.

b. Site description

Prior to field deployment, the EC systems were col-

located with an average separation distance of 3 m along

the northeastern edge of an irrigated (center pivot)

wheat field (Fig. 1) so that the instrument response of

the EC stations could be compared. The wheat field was

approximately 900 m east to west and 450 m north to

south. Because of the configuration of the instrumen-

tation systems, the minimum fetch for any system was

nearly 200 m. In comparison, the flux footprint, which

was calculated using the method of Schuepp et al. (1990),

indicated that the source area of 90% of the measured

flux at nominally 2 m was within 35 m of the microme-

teorological station. At the time of the intercomparison,

the height of the wheat canopy varied between 30 and

40 cm.

The 4-day period from 23 May [day of year (doy) 144]

through 26 May (doy 147) 2008 was selected for this

analysis because it was characterized by mostly clear-sky

conditions without precipitation or synoptic weather ac-

tivity. The prevailing wind during this period was from

the southwest, minimizing the potential for data con-

tamination due to flow distortion caused by air passing

through the boom and mast of the measurement systems

and maximizing upwind fetch of the wheat crop. Addi-

tionally, there were strongly advective conditions during

the afternoon, particularly on 25 May. As a result of the

lateral transport of warm, dry air across the study site

during these advective periods, lE was enhanced and

H was directed downward.

c. Data collection

Each of the nine EC micrometeorological systems was

equipped with a sonic anemometer (CSAT-3, Campbell

Scientific, Logan, Utah) to measure the orthogonal wind

velocity components. The sonic anemometers were ei-

ther new or were factory calibrated prior to the field

campaign. A fine-wire thermocouple (FW05, Campbell

Scientific) measured air temperature and an open-path

infrared gas analyzer (LI-7500, Li-COR Biosciences,

Lincoln, Nebraska) measured water vapor and carbon

dioxide concentration.1 These measurements were col-

lected at a nominal measurement height of 2.25 m AGL

and a frequency of 20 Hz. The instruments were mounted

facing southwest (2258). A zero and span calibration of

each of the gas analyzers was conducted immediately

before the field campaign. Additional instruments in-

cluded a combined humidity and temperature sensor

(HMP45, Vaisala, Helsinki, Finland) and, in the case of

five of the systems (stations 1–5), a four-component net

radiometer (CNR-1, Kipp and Zonen, Delft, Netherlands).

Stations B5 and B6 were equipped with Q*7 net radi-

ometers (Radiation Energy Balance Systems, Bellevue,

Washington).

The flux data were postprocessed using the full com-

plement of standard corrections and adjustments. Non-

physical values and outliers were first removed without

replacement from the high frequency (20 Hz) data using

a moving window algorithm based on the method out-

lined by Højstrup (1993). The threshold for identifying

a high frequency data point as an outlier was 4.5 stan-

dard deviations outside the window mean. In total for

FIG. 1. A simple schematic showing the approximate location of

each eddy covariance station along the perimeter of the wheat field.

1 Trade and company names are given solely for the purpose of

providing specific information and does not imply a recommenda-

tion or endorsement by the USDA.
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the 4-day study period, of the nearly 7 000 000 high fre-

quency measurements collected for each wind velocity

component and scalar quantity, the despiking algo-

rithm removed 9, 554, 114, and 31 measurements for

vertical wind speed, carbon dioxide density, water vapor

density, and air temperature, respectively. Next, a two-

dimensional rotation was applied to the wind velocity

components (u, y, and w) so that the coordinate system

was aligned into the prevailing wind direction (Tanner

and Thurtell 1969; Kaimal and Finnigan 1994). Third, the

data were corrected for sensor displacement and fre-

quency response attenuation (Massman 2000; Massman

and Lee 2002). Finally, 1-h block average turbulent fluxes

were calculated. These fluxes were then corrected for the

effects of heat and water vapor density (Webb et al. 1980;

Leuning 2004). The air temperature from the sonic an-

emometer was also corrected for humidity effects ac-

cording to Schotanus et al. (1983).

3. Statistical methods

a. Variography

Variography is well-established geostatistical tech-

nique that has been proven to be an effective means of

estimating spatial variability for a broad range of ap-

plications. The implementation described here parallels

Alfieri et al. (2009b) who used variography to quantify

the spatial variability in airborne flux measurements.

Briefly, assuming the underlying spatial processes—in

this case, turbulent exchange between the surface and

the atmosphere at each of the measurement locations—

exhibits second-order stationarity, so the correlation

between the measurements at each location can be char-

acterized using the semivariance according to

g(h) 5 t2 1 s2[1 2 C(h)], (1)

where g is the sermivariance, h is the separation distance

between locations, t2 is the nonspatial component of

the variance, s2 is the spatial component of the variance,

and C(h) is a valid covariance function. From this re-

lationship, it is evident that relationship between the

measurements is independent of location when s2 is zero.

Second-order stationarity implies that the spatial process

has a constant mean and a covariance that depends only

on the distance between locations (Schabenberger and

Gotway 2005). A valid covariance function is positive

definite and fulfills the assumption that proximal loca-

tions are more strongly related than distal ones (Isaaks

and Srivastava 1989).

b. Concordance correlation coefficient

Although the Pearson correlation coefficient (r) is

commonly used to ascertain the agreement between

measurements, the statistic measures only the precision

of the measurements; it does not consider the effects of

measurement accuracy (Lin et al. 2002). The concor-

dance correlation coefficient (rc) was introduced by

Lin (1989, 1992) to assess the agreement between mea-

surements collected by two methods in terms of both the

precision and accuracy of the measurements. In brief,

rc is the product of r, which reflects the precision of

the measurements, and a second coefficient (xa), which

is indicative of the measurement accuracy. It can be

expressed as

rc 5 rxa 5 r
2sisj

s2
i 1 s2

j 1 (mi 2 mj)
2
, (2)

where s is the standard deviation, s2 is the variance, m is

the mean, and i and j are indices indicating the mea-

surement method. The statistic was later extended by

Barnhart et al. (2002) to determine the agreement be-

tween multiple measurements. This overall concordance

correlation coefficient (ro) can be determined accord-

ing to

ro 5

2 �
N21

i51
�
N

j5i11
ri,jsisj

(N 2 1) �
N

i51
s2

i 1 �
N21

i51
�
N

j5i11
(mi 2 mj)

2

. (3)

c. Generation of the reference fluxes

To characterize the distribution of the fluxes, refer-

ence datasets were generated according to

F̂t 5
1

M
�
M

m51
Ft,m, (4)

where F̂
t

is the reference value for a given flux (F) at

time t, M is the number of measurements collected at

time t, and Ft,m is the flux measurement from the mth EC

system at time t. The interinstrument variability (sI-I)

was also estimated for each time step in terms of the

standard deviation of the flux measurements from all of

the EC systems for a given time:

sI-I
t

5

�
1

M21
�
M

m51
(Ft,m 2 F̂t)

2

�1/2

, (5)

where s
I-It

is the standard deviation of the measure-

ments for time t. Then, sI-I for a given time period was

calculated as
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sI-I 5

�
1

N
�
N

t51
s2

I-I
t

�1/2

. (6)

The interinstrument coefficient of variability (CVI-I),

which provides a measure of the variability among the

measurements collected during a given time period rel-

ative to their mean, was also calculated as the mean of

the CVI-I for each time step (CVI-It
) during the period.

The interinstrument coefficient of variability was calcu-

lated for each time step according to

CVI-I
t

5
sI-I

t

jF̂tj
. (7)

d. Uncertainty estimate of Hollinger and Richardson

This method, which will be referred to as the HR

method hereafter, for estimating the uncertainty asso-

ciated with EC measurements of the turbulent fluxes

was first proposed by Hollinger and Richardson (2005).

The method derives the uncertainty based on the differ-

ence the paired measurements collected independently

by two collocated EC systems. Following Hollinger and

Richardson (2005) and Richardson et al. (2006), the

uncertainty of the flux measurements collected inde-

pendently by two different sensors (Fi and Fj, respec-

tively) can be decomposed into the true flux ( _F) and

a pair of error terms (hi and hj) such that

Fi 5 _F 1 hi, (8a)

Fj 5 _F 1 hj. (8b)

If hi and hj are assumed to be independent random

variables drawn from identically the same distribution

with a mean of zero and standard deviation of s (h), the

expected difference between Fi and Fj is zero. The var-

iance of the difference between Fi and Fj is equal to the

variance of the difference between the error terms, that is,

s2(h
i
2 h

j
). In this case, the uncertainty of the two mea-

surement systems can be characterized by estimating

s(h) according to

s(h) 5
1ffiffiffi
2
p s(di,j), (9)

where di,j is the difference between Fi and Fj, and s(di,j)

is the variance of that difference.

Based on the earlier work of Hollinger and Richardson

(2005) and Richardson et al. (2006), the distribution of the

error estimates is not expected to be Gaussian. Rather,

it is expected to have a Laplace (double exponential)

distribution. The probability density function of this has

the form

f (x) 5

exp 2
jx 2 mj

b

� �
2b

, (10)

where m is the mean and b is the scaling parameter de-

fined as

b 5
1

N
�
N

i51
jxi 2 mj. (11)

The variance of the Laplace distribution is defined as

s2 5 2b2. (12)

In the case of this analysis, there are multiple uncer-

tainty estimates associated with each EC station. These

estimates were aggregated to a single value according to

si(h) 5
1ffiffiffi
2
p

8<
: 1

N(J 2 1) 2 1
�

J

j6¼i
(N 2 1)s2(di,j)

2
4

1�
J

j6¼i
Ndi,j

2
2 N(J 2 1)d

2
i

3
5
9=
;

1/2

, (13)

where i indicates the EC system associated with the

aggregate value, j is index indicating each of the J total

EC systems, N is the number of measurement periods,

di,j is the mean difference for the measurements from the

ith and jth EC system, and d
i

is the mean difference

between the measurements from the ith EC system and

all other EC system. It is calculated as

di 5
1

NJ
�

J

j6¼i
Ndi,j. (14)

e. Partitioning of the variance

After determining the best-fit line via ordinary least

squares (OLS) linear regression, the total error associ-

ated with a given EC station can be partitioned between

its systematic and random component as described by

Willmott (1982). Each of these errors can be related as

follows:

s2
T 5 s2

S 1 s2
R, (15)

where s2
T , s2

S, and s2
R are the total, systematic, and

random errors, respectively. They are defined as
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s2
T 5 s2(F 2 _F), (16a)

s2
S 5 s2(F̂ 2 _F), (16b)

s2
R 5 s2(F 2 F̂), (16c)

where _F is the true flux, F is the measured flux, and F̂ is

the predicted flux from the linear regression.

f. Uncertainty estimate of Mann and Lenschow

This method, which will be referred to as the ML

method hereafter, was derived from the governing prin-

ciples of turbulent transport to estimate the uncertainty

in the flux by considering the joint relationship between

vertical airflow and the scalar quantity (e.g., temperature)

of interest. The method was originally developed for

application to airborne flux measurements (Lenschow

et al. 1994; Mann and Lenschow 1994) but was later

modified for use with EC towers by Hollinger and

Richardson (2005) and Richardson et al. (2006). In this

modified form, the uncertainty of the flux measurements

is estimated according to

s 5 jFj
"

2t(1 1 r2
w, x)

Lr2
w,x

#1/2

1 2 a
zm

zi

� �
, (17)

where s is the measurement uncertainty, F is the mea-

sured flux, t is the integral time scale of the measurement,

L is the length of the measurement period, rw,x is the

correlation coefficient between the vertical wind speed (w)

and the scalar quantity of interest (x), a is an empirical

coefficient relating the flux at the top of the convective

boundary layer to the flux at the surface, zm is the mea-

surement height, and zi is the height of the convective

boundary layer. Although more complex methods have

been suggested by Finkelstein and Sims (2001), the in-

tegral time scale is estimated here as t 5 zm/u, where u is

the mean wind speed. This simple approach has been used

successfully in numerous past studies (e.g., Hollinger and

Richardson 2005; Billesbach 2011). During the day, the

measurement height of the surface flux stations are much

less than the convective boundary layer height, so the final

term on the right-hand side can be neglected. The same

assumption cannot be made for the overnight or early

morning hours when the convective boundary layer is

shallow or has collapsed altogether (LeMone et al. 2002).

4. Results and discussion

a. Spatial analysis

The EC systems were located within 24 m of one an-

other and the upwind wheat field was both level and

visually uniform. As a result, variability among the mea-

surements due to the relative locations of the sensor sys-

tems was not expected. To confirm this, however, a

variography analysis was conducted for each of the tur-

bulent fluxes.

For H, a comparison of the mean t2 (42.6 W2 m24)

and mean s2 (0.9 W2 m24) suggests that the relative

locations of the sensor systems did not contribute sig-

nificantly to the variability in the measurements. If the

contribution to the total variability is considered in rel-

ative terms, spatial variability accounted for between

0% and 6% of the total variability with a median value

of 0% and an interquartile range of 1.9%. (Because of the

highly skewed distribution of the spatial contribution—

the contribution was less than 2% for nearly 80% of the

measurements—the median and interquartile range are

used to provide a more robust estimate of the central

tendency and dispersion of the data). In the case of lE,

the mean t2 and s2 were 1.3 and 143 W2 m24, respec-

tively. The relative contribution of the spatial compo-

nent to the total variability ranged between 0% and

7.1% with a median value of 0% and an interquartile

range of 1.3%. Finally, for Fc, the mean t2 and s2 were

0.0042 and 0 mg2 s22 m24, respectively.

The analysis also suggests good agreement between

the measurements from the nine EC systems. The total

variability among the measurements of H averaged

6.6 W m22 while the total variability among the mea-

surements of lE and Fc were 12.0 W m22 and 0.065

mg s21 m22, respectively.

b. Measurement agreement

To more rigorously ascertain the agreement between

the nine EC systems, ro was calculated for each of

the turbulent fluxes: H, lE, and Fc. The coefficient was

calculated not only for the whole of the study period, but

also for the daytime, overnight, and transitional periods.

The daytime period is defined as the period from 0900

to 1900 central standard time (CST), the overnight pe-

riod is the period from 2100 to 0700 CST, and the tran-

sitional period is defined as the periods from 0700 to

0900 CST and 1900 and 2100 CST.

With values ranging between 0.90 and 0.97, ro in-

dicates strong agreement among the nine EC systems for

all of the turbulent fluxes when the full intercompari-

son period was considered. However, as can be seen in

Table 1, the strength of this agreement varied depending

on the time of day. This is particularly evident in the

case of Fc, which had ro of 0.67 for the overnight period.

The weaker agreement during the overnight period likely

was due to the calm conditions and a lack of turbulent

mixing that typified nocturnal conditions during the inter-

comparison. During the overnight period, the maximum
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wind speed was 3.1 m s21 and the mean wind speed was

2.2 m s21 while the maximum friction velocity (u
*
) was

0.38 m s21 and the mean was 0.21 m s21. Similarly, the

mean Monin–Obukhov stability parameter was 0.11. This

is in agreement with numerous studies (e.g., Goulden

et al. 1996; Blanken et al. 1998; Baldocchi 2003; Alfieri

et al. 2009a) that have shown that the measurement of

surface fluxes, and especially Fc, can be problematic un-

der stable nighttime conditions when turbulent intensity

is low. If only those measurements collected when u
*

exceeded 0.18 m s21—typically, a threshold of be-

tween 0.10 and 0.20 m s21 is used to ensure sufficient

turbulent intensity (Novik et al. 2004)—are used to cal-

culate ro during the overnight period, the agreement

among the measurement of Fc increases somewhat to 0.78.

c. Evaluation of the distribution of the fluxes

To further investigate the differences among the mea-

surements during differing times of day, the relationship

between sI�I and both time of day and the magnitude of

the flux was evaluated beginning with H. Based on the

nonparametric Kruskal–Wallace test (Burt and Barber

1996) at a 95% confidence level, the measured values

of H from all of the EC stations, as well as the reference

H (Href), which is the average of all nine EC systems,

had statistically equivalent Gaussian distributions with

a mean of 228 W m22 and standard deviation of 60

W m22. Although the associated means and standard

deviations changed, the distributions of each of the sub-

sets remained Gaussian when the data were partitioned

into the day, overnight, and transitional periods (Table 2).

Although sI-I for H was less than 10 W m22 regard-

less of the time of day (Table 2), which again indicates

strong agreement among the measurements from the

nine EC systems, there was a clear diurnal pattern with

greatest variability among the nine EC systems occur-

ring during the daytime and transitional periods (Figs.

2c,d). Since the flux measurements with magnitude near

zero tended to occur during these periods, this suggests

that sI-I for H varies in proportion with the magnitude

of H. A scatterplot of sI-I as a function of the absolute

value of Href confirms this (Fig. 2d). If the CVI-I for H

is considered instead, the diurnal variability is less pro-

nounced (Figs. 2f,g). Additionally, CVI-I appears to de-

crease asymptotically with the increasing magnitude of

Href (Fig. 2h). None of these relationships, however, are

as clearly defined for H as they are for the other tur-

bulent fluxes. This is possibly because of the advective

conditions at the study site, which tended to suppress H

especially during the afternoon (Figs. 2a,b).

While the Kruskal–Wallace test at a 95% confidence

level indicated that both the individual measurements

of lE and the reference latent heat flux (lEref) shared

the same distribution, the distribution of lE was more

complex than the distribution of H. The distribution of

lE had a bimodal distribution that can best be described

as a composite of two distinct Gaussian distributions.

The first distribution represents the overnight and tran-

sitional periods and has a mean of 43 W m22 and a stan-

dard deviation of 35 W m22. The second represents the

TABLE 1. For each of the turbulent fluxes, the overall concor-

dance correlation coefficients (ro) for both the full intercomparison

period and subsets of data collected during differing times of day

are shown.

Time period H lE Fc

Full 0.95 0.97 0.90

Daytime 0.95 0.92 0.87

Overnight 0.91 0.86 0.67

Transitional 0.98 0.90 0.84

TABLE 2. Summary statistics show the variability both of the reference dataset and among the nine EC systems for different time periods.

Time period Full Daytime Overnight Transitional

Sensible heat flux

Period mean (W m22) 228 218 238 230

Period standard deviation (W m22) 60 81 24 62

Interinstrument standard deviation (W m22) 7.2 8.2 4.8 9.4

Interinstrument coefficient of variability 12% 15% 8% 14%

Latent heat flux

Period mean (W m22) 179 368 24 92

Period standard deviation (W m22) 177 105 17 60

Interinstrument standard deviation (W m22) 22 32 5.6 17.3

Interinstrument coefficient of variability 13% 9% 16% 16%

Carbon dioxide flux

Period mean (mg s21 m22) 20.09 20.42 0.20 20.02

Period standard deviation (mg s21 m22) 0.35 0.25 0.11 0.31

Interinstrument standard deviation (mg s21 m22) 0.07 0.06 0.06 0.09

Interinstrument coefficient of variability 30% 25% 32% 37%
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daytime period and has a mean of 368 W m22 and

a standard deviation of 105 W m22.

In contrast to H, the diurnal pattern of both lE and

sI-I for lE are well defined (Figs. 3a–d). The greatest sI-I

tended to occur during the day when lEref was greatest

while the lowest variability among the measurements

occurred overnight (Table 2) when the magnitude of

the flux was near zero. This again indicates that the

variability among the measurements from the nine EC

systems is proportional to the magnitude of the flux. As

can be seen in Fig. 3e, the relationship between sI-I and

the magnitude of lEref is linear when the scatter due to

measurements collected under highly advective con-

ditions of 25 May is ignored. In contrast, CVI-I for lE

shows the opposite pattern with the lowest relative vari-

ability tending to occur during the day (Figs. 3f,g).

When CVI-I is plotted as a function of the magni-

tude of lEref, the resulting curve is asymptotic and ap-

proaches 0.04 when the magnitude of the flux is large

(Fig. 3h). One interpretation of the curve of CVI-I as

a function of the magnitude of the flux is in terms of the

relative uncertainty of the measurements. In this light,

the curve suggests that one could reasonably place more

confidence in the daytime measurements than those

collected overnight. The curve also suggests that at least

part of the variability in the flux measurements is caused

by factors that are unaffected by the changes in envi-

ronmental conditions over time.

As with Href and lEref, the Kruskal–Wallace test at

a 95% confidence level indicated that both the indi-

vidual measurements of Fc and the reference carbon

dioxide flux (Fc ref) shared the same distribution. The

FIG. 2. The turbulent flux, as well as sI-I and CVI-I, associated with H are shown as a function of (a),(c),(f) time,

(b),(d),(g) time of day, and (e),(h) the magnitude of Href.
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distribution of Fc ref was multimodal distinct Gaussian

distributions representing the daytime, overnight, and

transitional periods (Table 2).

As was the case with lE, the diurnal pattern in Fc and

sI-I for Fc are well defined (Figs. 4a–d). In this case,

however, the greatest variability among the measure-

ments occurred during the transitional period when the

magnitude of Fc was small. Indeed, sI-I was the same

(0.06 mg s21 m22) during the daytime and overnight

periods. This is also evident in the scatterplot of sI-I as

a function of the magnitude of Fc (Fig. 4e), which shows

substantial variability in sI-I when Fc is small and has

nearly constant variability when the magnitude of Fc

is greater than 0.5 mg s21 m22. The relative variability

again shows asymptotic behavior and approaches 0.03

when the magnitude of Fc is large. The strongly advective

conditions on doy 146 did not appear to have an effect

on Fc.

d. Assessment of uncertainty using the method of
Hollinger and Richardson

In an effort to ascertain the uncertainty associated

with each of the nine EC stations, the method described

by Hollinger and Richardson (2005) and Richardson

et al. (2006) was applied to all possible pairs of EC sys-

tems. In addition, the technique was applied to both the

full study period and the subsets based on time of day.

As can be seen in Table 3, which shows, as an example,

the results of the analysis for H when the full inter-

comparison period was considered, the uncertainty es-

timates varied depending on the combination of EC

systems evaluated. For that data, the uncertainty estimates

FIG. 3. The turbulent flux, as well as sI-I and CVI-I, associated with lE are shown as a function of (a),(c),(f) time,

(b),(d),(g) time of day, and (e),(h) the magnitude of lEref. (d),(e) The circled points indicate the measurements

collected during the highly advective conditions in the afternoon and evening of day of year 146.
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spanned between 6.6 and 12 W m22. While this range is

fairly small, it (in conjunction with the nonzero mean

differences) does suggest that the underlying assump-

tion of this method that the measurement uncertainty is

equal for all of the EC systems may not be valid for

these data.

If the underlying assumption of the HR method holds

true, one would expect the uncertainty estimates asso-

ciated with each EC system to share the same distribu-

tion. That being the case, the validity of this assumption

can be assessed by testing whether the uncertainty es-

timates for each EC station have the same distribution.

This was done by again using the Kruskal–Wallis test.

When the test was applied the uncertainty estimates for

H when the full intercomparison period was considered,

it indicated the distributions were the same at the 95%

confidence level. When the Kruskal–Wallis test was ap-

plied to the uncertainty estimates for the daytime pe-

riod, the same results were found. The distribution of

uncertainty estimates for H during the overnight and

transitional periods, however, were found to differ among

the nine EC system. In the case of the overnight period,

it was found that the distribution of the uncertainty

estimates for station AZ differed in a statistically sig-

nificant manner from the distributions of the other EC

systems. Specifically, the mean uncertainty estimate for

station AZ was significantly higher than for the other

stations (Table 4). Statistically significant differences in

the distributions of the uncertainty estimates of H were

also found in the case of the transitional period; during

this time period, the distribution of estimates from station

6 also differed from the others.

FIG. 4. The turbulent flux, as well as sI-I and CVI-I, associated with Fc are shown as a function of (a),(c),(f) time,

(b),(d),(g) time of day, and (e),(h) the magnitude of Fc ref.
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By applying the Kruskal–Wallis test to the uncertainty

estimates for lE, statistically significant differences at

the 95% confidence level were found in the distributions

of the uncertainty estimates for the whole intercom-

parison period for stations 6 and 3 as well as the daytime

for station 3, and overnight and transitional periods

for station AZ. By applying the Kruskal–Wallis test to

the uncertainty estimates for Fc, statistically significant

differences at the 95% confidence level were found in

the distributions of the uncertainty estimates for the

overnight for station 2 and transitional periods for sta-

tion B5 (Table 4).

e. Regression analysis

Since there was a degree of ambiguity among the

uncertainty estimates calculated using the HR method,

a pair of additional analyses was conducted. As was dis-

cussed earlier, strong advection occurred during the af-

ternoon and early evening. Also, as was discussed earlier,

the u
*

measurements during the overnight period in-

dicated that there were intermittent periods of low

turbulent intensity. As a result, a bias could have been

introduced into the measurements of some, but not

necessarily all, of the EC measurements. The presence

of a bias would cause both nonzero mean differences

and variability in the uncertainty estimates seen with the

HR method.

To determine if bias affected the measurements, the

measured flux from each EC system was regressed against

the reference flux described earlier and the variance of

the residuals was partitioned between its systematic and

TABLE 3. The uncertainty estimates calculated with the method

of Hollinger and Richardson (2005) and Richardson et al. (2006)

using the measurements of H for the full intercomparison period

are shown.

EC station 1 2 3 4 5 6 AZ B5 B6

1 8.9 8.6 9.0 6.6 10 10 7.2 9.0

2 8.9 7.1 7.4 9.9 8.3 10 8.1 7.8

3 8.6 7.1 8.8 9.2 8.7 12 8.9 8.5

4 9.0 7.4 8.8 9.1 9.5 9.6 9.3 9.3

5 6.6 9.9 9.2 9.1 10 8.8 7.5 10

6 10 8.3 8.7 9.5 10 11 9.8 9.3

AZ 10 10 12 9.6 8.8 11 9.7 9.7

B5 7.2 8.1 8.9 9.3 7.5 9.8 9.7 8.4

B6 9.0 7.8 8.5 9.3 10 9.3 9.7 8.4

Aggregate 9.2 8.8 9.4 9.8 9.4 10 12 8.8 9.3

TABLE 4. A summary of the aggregated uncertainty estimates calculated for each of the turbulent fluxes using the method of Hollinger

and Richardson (2005) and Richardson et al. (2006) is provided. Bold font indicates that statistically significant differences in the dis-

tribution of the uncertainty estimates were found at the EC station.

Time period Statistic

EC station Aggregate of

all stations1 2 3 4 5 6 AZ B5 B6

Sensible heat flux

Full Uncertainty 9.2 8.8 9.4 9.8 9.4 10 12 8.8 9.3 9.8

Mean difference 0.9 20.1 1.0 20.6 20.2 20.2 1.9 22.6 24.3 20.5

Daytime Uncertainty 13 12 14 13 13 13 14 11 11 13

Mean difference 0.8 0.6 2.8 21.0 20.6 21.0 21.9 24.7 27.7 21.1

Overnight Uncertainty 6.0 6.3 5.2 5.9 6.2 6.2 7.5 6.0 5.4 6.1

Mean difference 0.9 21.3 0.5 20.3 0.0 0.2 1.3 0.1 0.5 0.2

Transitional Uncertainty 9.4 9.3 11 9.6 11 13 14 11 9.0 11

Mean difference 0.8 0.9 22.2 0.0 0.3 0.7 3.5 24.0 0.3 0.0

Latent heat flux

Full Uncertainty 24 22 31 23 26 50 25 22 23 29

Mean difference 26.3 0.0 7.8 1.9 3.4 7.9 26.1 21.9 27.8 20.1

Daytime Uncertainty 37 36 50 38 40 77 36 35 35 46

Mean difference 212 1.0 17 4.6 7.4 18 29.4 26.4 213 0.8

Overnight Uncertainty 5.5 5.9 5.0 5.6 5.3 7.6 6.1 5.8 5.8 6.0

Mean difference 0.9 20.9 20.2 0.3 0.3 0.9 20.9 0.2 20.3 0.0

Transitional Uncertainty 19 17 19 17 17 30 27 20 16 21

Mean difference 29.8 0.2 2.8 20.1 0.8 3.1 29.2 4.0 27.4 21.7

Carbon dioxide flux

Full Uncertainty 0.08 0.08 0.08 0.07 0.08 0.07 0.09 0.08 0.08 0.08

Mean difference 0.00 20.02 0.00 0.00 0.01 20.01 20.01 20.02 0.00 20.01

Daytime Uncertainty 0.08 0.08 0.09 0.08 0.08 0.08 0.09 0.09 0.08 0.08

Mean difference 0.00 0.00 20.02 20.01 20.01 20.02 20.02 20.02 20.02 20.02

Overnight Uncertainty 0.06 0.08 0.06 0.06 0.07 0.06 0.07 0.06 0.06 0.06

Mean difference 0.00 0.00 0.00 0.00 0.00 0.00 20.01 0.00 20.01 0.00

Transitional Uncertainty 0.11 0.14 0.11 0.11 0.10 0.15 0.16 0.18 0.15 0.14

Mean difference 0.04 20.04 0.00 0.00 0.00 0.00 0.01 20.04 0.03 0.00
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random components. Assuming that the reference flux

(average of the measurements from all nine EC systems)

closely approximates the true flux, the residuals of the

linear regression reflect the errors associated with the

measurements from the individual systems. That being

the case, not only would the distribution of the residuals

be indicative of the distribution of the measurement er-

rors, sT would be indicative of the total measurement

error while sS and sR would be indicative a bias and

uncertainty, respectively.

Not altogether unexpectedly, the analysis yielded sT

values (Table 5) that were similar to the uncertainty es-

timates of the HR method. The analysis showed that sS

accounted for as much as 40% of the total error but

typically contributed much less (Table 5). On average, the

systematic error accounted for 18% of sT for H, 17% of

sT for lE, and 6% of sT for Fc.

A further comparison of the distribution of residuals

(Fig. 5) showed them to have expected Laplace distri-

butions with the occasional outlier. These outliers con-

sistently represented the same measurement periods.

For example, in the case of H, two outlying points

were evident; the first of these represented the period

from 1800 to 1900 CST on doy 144, while the second

represented the period from 1800 to 1900 CST on doy

146. In the case of lE, four points were outliers repre-

senting the periods from 1800 to 1900 CST on doy 144,

1800 to 2000 CST on doy 146, and 1500 to 1600 CST on

doy 147 were found. In the case of Fc, three points were

outliers representing the period from 1800 to 2100 CST

TABLE 5. A summary of the regression analysis showing the partition of the variance between systematic and random components, and the

percent contribution of each. Bold font indicates that the contribution of systematic error exceeded 20%.

EC station

Flux Sensible heat flux Latent heat flux Carbon dioxide flux

Statistic Std dev % Std dev % Std dev %

Time period T S R S R T S R S R T S R S R

1 Full 8.3 2.9 7.8 12 88 14 5.3 13 14 86 0.08 0.00 0.08 0 100

Daytime 11 4.7 10 18 82 23 9.6 21 17 83 0.08 0.01 0.08 1 99

Overnight 5.7 1.1 5.6 4 96 4.9 0.6 4.9 3 97 0.07 0.02 0.07 9 91

Transitional 7.1 2.9 6.5 16 84 15 6.8 13 20 80 0.10 0.05 0.09 24 76
2 Full 8.2 1.3 8.1 3 97 12 4.0 12 11 89 0.08 0.02 0.08 3 97

Daytime 11 2.4 11 4 96 18 7.2 16 16 84 0.09 0.01 0.09 2 98

Overnight 7.5 2.9 6.9 15 85 6.4 2.4 6.0 13 87 0.07 0.01 0.07 2 98

Transitional 7.0 1.6 6.8 5 95 13 6.1 11.8 21 79 0.11 0.05 0.10 22 78
3 Full 11 5.0 10 20 80 33 20 26 37 63 0.07 0.01 0.07 1 99

Daytime 19 9.1 17 23 77 38 18 33 23 77 0.11 0.03 0.10 3 97

Overnight 4.8 1.6 4.5 11 89 3.9 0.6 3.8 2 98 0.05 0.01 0.05 6 94

Transitional 9.5 4.1 8.6 18 82 17 9.6 14 31 69 0.07 0.03 0.06 18 82

4 Full 8.7 1.6 8.6 4 96 15 2.8 15 3 97 0.06 0.01 0.06 5 95

Daytime 10 9.1 4.1 17 83 23 4.5 23 4 96 0.09 0.04 0.09 14 86

Overnight 6.9 2.4 6.5 12 88 4.8 1.3 4.6 7 93 0.05 0.02 0.05 12 88

Transitional 7.1 4.0 5.9 32 68 11 0.9 11 1 99 0.09 0.01 0.08 2 98

5 Full 8.9 2.5 8.6 8 92 14 9.2 11 40 60 0.07 0.01 0.07 1 99

Daytime 14 6.7 12 24 76 30 19 24 38 62 0.08 0.01 0.08 1 99

Overnight 4.5 1.7 4.0 17 83 4.5 1.6 4.2 13 87 0.07 0.01 0.07 4 96

Transitional 8.4 5.0 6.8 36 64 10 6.3 8.2 37 63 0.06 0.00 0.06 0 100

6 Full 9.7 1.1 9.6 1 99 29 12 26 18 82 0.10 0.01 0.10 1 99

Daytime 14 3.3 13 6 94 43 24 36 31 69 0.13 0.03 0.13 10 90

Overnight 6.0 1.7 5.3 20 80 8.4 3.4 7.7 16 84 0.05 0.01 0.05 2 98

Transitional 13 1.8 13 2 98 32 18 26 33 67 0.15 0.05 0.14 9 91

AZ Full 10 4.5 8.9 20 80 15 4.1 14 8 92 0.10 0.01 0.10 1 99

Daytime 13 7.5 10 35 65 25 11 23 19 81 0.13 0.01 0.13 1 99

Overnight 8.6 3.4 7.9 16 84 8.8 1.8 8.6 4 96 0.08 0.02 0.07 7 93

Transitional 12 7.4 9.1 37 63 30 15 26 26 74 0.17 0.03 0.16 3 97

B5 Full 8.4 1.4 8.3 3 97 18 0.9 18 1 99 0.09 0.02 0.09 3 97

Daytime 9.1 1.6 8.9 4 96 24 8.8 22 14 86 0.08 0.02 0.08 8 92

Overnight 6.8 2.9 6.1 18 82 7.3 2.4 6.9 11 89 0.05 0.00 0.05 1 99

Transitional 9.8 4.5 8.7 21 79 22 8.2 21 13 87 0.21 0.06 0.20 9 91

B6 Full 9.4 2.8 9.2 10 90 16 8.0 14 25 74 0.16 0.00 0.16 0 100

Daytime 9.2 5.4 7.5 34 66 22 12 19 28 72 0.21 0.02 0.21 1 99

Overnight 4.9 0.9 4.8 4 96 7.8 3.0 7.2 14 86 0.05 0.02 0.05 15 85

Transitional 5.6 3.1 4.6 32 68 13 5.8 11 21 79 0.14 0.03 0.14 4 96
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on doy 146 were found. In all cases, the outliers occurred

during the late afternoon and evening periods when

advective conditions tended to be strongest. If the mea-

surements corresponding to these time periods are

omitted from the analysis, sT collapses to very nearly

the same value (Table 6).

Given that these results strongly suggested that ad-

vective periods can impact and inflate the uncertainty

estimates, the HR method was repeated omitting the

measurements from those periods that occurred during

advective periods. The revised estimates (Table 7) are

much more consistent than were the initial uncertainty

estimates calculated with the HR method. For example,

the range in the uncertainty estimates for H for the full

intercomparison period was reduced from 3.2 to 1 W m22.

If only the transitional period were considered, the

range in the uncertainty estimates for H was reduced

from 5 to 2 W m22. Much more striking, however, was

the impact of eliminating the measurements collected

during strong advection on the uncertainty estimates of

lE. In the case of the former, the range in the uncer-

tainty estimates was reduced from 28 to 3.2 W m22

when the full intercomparison period was considered,

from 42 to 3.8 W m22 when only the daytime period was

considered, and from 14 to 9.0 W m22 when only the

transitional period was considered. Similarly, the range

FIG. 5. The distribution of the residuals is shown for each of the nine EC systems along with it corresponding probability density function.

The probability density function of the analysis when the outlying points were omitted is also shown.
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uncertainty estimates for Fc was reduced from 0.08 to

0.02 mg m22 s21 when only the measurements collected

during the transitional period were considered.

With the exception of the estimates for the transi-

tional period, which increased somewhat, the revised

uncertainty estimates for H were little changed from the

initial estimates. Similarly, the revised uncertainty esti-

mates for Fc differ little from the initial estimates except

during the transitional period where it decreased by half

from 0.14 to 0.07 mg m22 s21. In contrast, the uncer-

tainty estimate for lE calculated using the daytime data

decreased by 40%, or nearly 20 W m22. In terms of

percent reduction, a similar decrease was seen for the

error estimates during the transitional period, which

decreased by 33% from 21 to 14 W m22. The uncer-

tainty estimates for Fc decreased by 50% from 0.14 to

0.07 mg m22 s21 for the transitional period.

It is posited that the difference in the uncertainty es-

timates reflect the impacts of strongly advective condi-

tions. The fundamental assumptions underlying the EC

method are violated under these conditions since mea-

sured flux does not reflect only the vertical transport of

heat and moisture, but may include a horizontal com-

ponent as well. Although the spatial analysis did not

confirm this, advection is likely to impact the EC systems

differently depending on the path of the advected air

TABLE 6. A summary of the sT of the residuals of the linear regression when the periods associated with the outliers were omitted.

Time period

EC station Mean of

all stations1 2 3 4 5 6 AZ B5 B6

Sensible heat flux

Full 7.0 7.0 6.6 6.3 6.6 7.1 7.9 6.9 7.5 7.0

Daytime 8.8 8.4 8.5 9.3 7.6 9.2 7.8 8.9 8.9 8.6

Transitional 6.3 7.3 7.7 6.9 6.9 7.3 7.7 7.7 7.8 7.3

Latent heat flux

Full 9.9 11 11 12 9.4 12 9.8 10 9.4 11

Daytime 15 16 15 16 15 16 16 16 14 16

Transitional 13 9.1 13 14 10 12 12 9.8 10 11

Carbon dioxide flux

Full 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.04 0.04 0.05

Daytime 0.04 0.04 0.04 0.03 0.04 0.04 0.05 0.04 0.04 0.04

Transitional 0.04 0.04 0.05 0.04 0.04 0.06 0.06 0.06 0.05 0.05

TABLE 7. A summary of the revise uncertainty estimates calculated for each of the turbulent fluxes using the method of Hollinger and

Richardson (2005) and Richardson et al. (2006) is provided.

Time period Statistic

EC station Aggregate of

all stations1 2 3 4 5 6 AZ B5 B6

Sensible heat flux

Full Uncertainty 10 10 10 11 10 11 11 10 11 11

Mean difference 0.7 20.7 20.2 20.7 20.5 20.4 0.5 0.4 0.7 0

Daytime Uncertainty 12 11 10 12 11 11 12 11 11 12

Mean difference 1.0 20.7 20.3 20.3 20.7 0.8 0.2 20.6 0.8 0

Transitional Uncertainty 14 14 15 14 15 16 16 16 15 15

Mean difference 0.5 0.4 20.6 20.4 0.0 20.3 0.6 20.7 0.5 0

Latent heat flux

Full Uncertainty 18 18 21 18 18 20 19 18 18 19

Mean difference 20.6 0.5 0.8 0.6 20.9 0.1 20.4 20.5 0.0 0.0

Daytime Uncertainty 26 26 29 28 28 26 25 25 25 28

Mean difference 21.3 0.5 0.4 0.4 0.7 0.7 20.9 20.5 20.2 0.0

Transitional Uncertainty 14 11 14 13 13 20 13 11 11 14

Mean difference 20.5 21.0 0.8 20.5 0.3 0.8 0.0 20.4 0.8 0.00

Carbon dioxide flux

Full Uncertainty 0.09 0.09 0.08 0.08 0.09 0.08 0.09 0.08 0.09 0.09

Mean difference 0.01 20.01 20.01 0.00 0.00 0.00 20.01 0.01 20.01 0.00

Daytime Uncertainty 0.09 0.10 0.09 0.08 0.10 0.08 0.09 0.08 0.10 0.09

Mean difference 0.02 20.03 20.01 0.01 0.01 0.01 20.01 20.02 0.01 0.00

Transitional Uncertainty 0.06 0.06 0.08 0.06 0.07 0.08 0.08 0.06 0.07 0.07

Mean difference 0.01 20.01 0.01 0.01 0.00 0.00 20.02 0.01 0.00 0.00
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across the study site. For example, if the wind is southerly,

it will have traveled over a greater portion of the field to

reach the sites at the north end of the intercomparison,

(e.g., stations 1 and 3) than those stations farther to the

south. As a result the air parcel would be in greater

equilibrium with the local surface conditions at the

northern sites than those to the south.

f. Assessment of uncertainty using the method
of Mann and Lenschow

To further evaluate the revised uncertainty estimates

calculated using the HR method, a second analysis was

conducted using the ML method. As can be seen from

the summary of results in Table 8, the uncertainty esti-

mates using this technique tended to agree closely among

the nine EC systems. For example, the range in the

uncertainty estimates for H was less than 3 W m22 such

that the mean uncertainty estimate was 13 W m22. This

value agrees quite closely with the result using the HR

method (12 W m22). The results of the ML method for

lE (27 W m22) and Fc (0.10 mg m22 s21) were also re-

markably similar to the revised estimates using the HR

method. As a result, the ML method not only reaffirms

the revised values from the HR method, it also confirms

the underlying assumptions of that technique—the mea-

surement uncertainty from the nine EC stations shares

the same distribution.

5. Conclusions

The result of this analysis showed the nine EC systems

used during BEAREX08 tended to agree strongly with

one another. They also show that the uncertainty asso-

ciated with these systems were quite similar during

quasi-normal (nonadvective) conditions. Under strongly

advective conditions, however, the uncertainty estimates

were typically both much higher and different from sta-

tion to station. This indicates that the advection in-

troduces significant uncertainty. In the case of Fc, the

uncertainty during advective conditions was 50% greater

than during quasi-normal conditions. Furthermore, since

the revised HR uncertainty estimates, which were limited

to quasi-normal conditions, tended to vary with time of

day and the magnitude of the flux, it is likely that the

amount of additional uncertainty introduced by advec-

tive conditions would also vary. While this could not be

confirmed with the data that was collected during the

intercomparison period, it is a reasonable hypothesis

that could be tested in a future study.

More broadly, the results of this study underscore the

need to be cognizant of ambient conditions when work-

ing with EC flux measurements, both when determining

the measurement uncertainty and when using the mea-

surement in subsequent analyses. While this study sug-

gests that the nine EC systems responded in a similar

fashion during quasi-normal conditions, it clearly dem-

onstrated that strongly advective conditions can result

in greater and more variable measurement uncertainty.

Thus, while a single uncertainty assessment conducted as

a part of an intercomparison study such as this one pro-

vides valuable baseline information, it might not capture

the true uncertainty of the flux measurements under the

full range of ambient conditions. To more fully under-

stand the degree of uncertainty in a flux dataset, an on-

going assessment would be highly beneficial and should

be conducted as an integral part of the postprocessing

of eddy covariance data. This is particularly true for re-

gional or global networks where local conditions can

vary significantly from site to site. While it is not prac-

tical to deploy multiple EC systems at each site in order

to use the HR method, the ML method provided equiv-

alent uncertainty estimates and can be calculated from

the high frequency data of a single tower. While this

method is limited to the daytime period only, it could

prove to be a useful technique to characterize the vari-

ability in the measurement uncertainty over time and

changing environmental conditions.
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TABLE 8. A summary of the mean uncertainty estimates calculated for each of the turbulent fluxes using the modified form of the Mann

and Lenschow method described by Hollinger and Richardson (2005) is provided.

Flux

EC station Mean of

all stations1 2 3 4 5 6 AZ B5 B6

H 13 12 13 12 13 15 12 14 15 13

lE 27 27 27 26 27 25 27 27 27 27

Fc 0.10 0.11 0.11 0.11 0.09 0.11 0.10 0.10 0.09 0.10
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