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Agriculture on the Texas High Plains (THP) uses approximately 89% of

groundwater withdrawals from the Ogallala Aquifer, leading to steady decline in

water table levels. Therefore, efficient water management is essential for sustaining

agricultural production in the THP. Accurate evapotranspiration (ET) maps

provide critical information on actual spatio-temporal crop water use. METRIC

(Mapping Evapotranspiration at High Resolution using Internalized Calibration)

is a remote sensing based energy balance method that uses radiometric surface

temperature (Ts) for mapping ET. However, Ts calibration effects on satellite based

ET estimation are less known. Further, METRIC has never been applied for the

advective conditions of the semi-arid THP. In this study, METRIC was applied

and predicted ET was compared with measured values from five monolithic

weighing lysimeters at the USDA-ARS Conservation and Production Research

Laboratory in Bushland, Texas, USA. Three different levels of calibration were

applied on a Landsat 5 Thematic Mapper’s thermal image acquired on 23 July

2006 to derive Ts. Application of METRIC on a MODTRAN calibrated image

improved the accuracy of distributed ET prediction. In addition, ET estimates

were further improved when a THP-specific model was used for estimating leaf

area index. Results indicated that METRIC performed well with ET mean bias

error¡root mean square error of 0.4¡0.7 mm d21.

1. Introduction

The Ogallala Aquifer is the main source of water supply for the Texas High Plains

(THP) and it is being depleted at an unsustainable rate (Axtell 2006). In the THP,

irrigation alone uses approximately 89% of the water pumped from the Ogallala

Aquifer (Dennehy 2000). McGuire (2004) indicated that the change in water storage

in the aquifer beneath the THP, from predevelopment to 2003, was about 164.1 km3

(5.2 km3 from 2002 to 2003) with an average area-weighted water-level decline of

10.6 m (0.37 m from 2002 to 2003). For this reason and considering the positive

trends in population growth in the THP, there is a need for greater efficiency in

irrigation water management for agriculture.

Improvement in irrigation water management may be achieved when the

beneficial crop water use, among other factors, is accurately quantified in time

and space. Remote sensing (RS) based evapotranspiration (ET) methods are found

to be useful for deriving such information. Numerous RS algorithms, such as

METRIC (Mapping Evapotranspiration at high Resolution with Internal
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Calibration; Trezza 2002, Allen et al. 2007a, 2005a), SEBAL (Surface Energy Balance

for Land; Bastiaanssen et al. 1998), a two-source energy balance model (TSM; Norman

et al. 1995), a dimensionless temperature method (DT, Suleiman and Crago 2004), an

aerodynamic temperature-based model (Chávez 2005, Chávez et al. 2005) and an

analytical land atmosphere radiometer model (ALARM; Suleiman and Crago 2002)

have been developed to spatially estimate crop water consumption or ET and are being

tested around the world. These algorithms mainly solve the energy balance of the land

surface for latent heat flux (LE), equation (1), at the time of satellite or airborne RS

system overpass and extrapolate instantaneous LE to daily ET values.

LE~Rn{G{H, ð1Þ

where Rn is net radiation (W m22), G is the soil heat flux (W m22) and H is the sensible

heat flux (W m22). LE is converted to ET (mm h21 or mm d21) by dividing it by the

latent heat of vaporization (lLE52.501–0.00236 (Ta), MJ kg21 for Ta in uC), density of

water (rw; ,1.0 Mg m23), and an appropriate time constant. The sign convention for

the different flux terms in equation (1) is positive from the land surface to the

atmosphere (up) for LE and H, and positive towards the surface for Rn and into the

ground (down) for G.

Gowda et al. (2007a) discussed the pros and cons of numerous RS algorithms for

ET estimation. For instance, they indicated that the TSM model yielded surface heat

fluxes with errors within 10–12%, although this model demands several crop and

micro-meteorological data that, in many circumstances, are very difficult to obtain.

The SEBAL model had a typical accuracy of 85% or errors ranging from 2.7 to

35.0% with an overall average error of 18.2%, under a variety of climatic/

environmental conditions. METRIC appeared to have an advantage over SEBAL

under advective conditions. METRIC’s ET estimation errors were reported to be

approximately 10–20% for daily estimates and as low as 1–4% for seasonal ET

estimates, requiring only vapour pressure (or relative humidity) and wind speed

measurements from weather stations (WS) within the satellite scene. Therefore, the

attributes presented by METRIC make it very attractive for mapping ET under the

advective conditions regularly encountered in the THP.

Allen et al. (2005b) stated that ‘The result of no correction of L6 (radiance values

in thermal band 6 of Landsat Thematic Mapper) will be a general underestimation

of surface temperature (Ts) by up to about 5uC for warmer portions of an image.

However, because METRIC tailors the ‘‘dT’’ function around the Ts data calculated

for an image, the impact on final ET values is generally small, especially for areas having

low and high values of ET. Errors may be larger for midrange ET values, but generally

less than a few percent’. Tasumi et al. (2005) performed a sensitivity analysis and

concluded that the internal calibration procedures in METRIC largely eliminate errors

in ET resulting from lack of atmospheric corrections. However, inaccurate calibrated

Ts values for the hot and cold pixels may scale dT (Allen et al. 2005b) inappropriately.

Thus, error accumulation in Rn, G and H may affect ET estimation accuracy through

error propagation. Therefore, it is of interest to evaluate the effect of using different

levels of Ts calibration. It involves the removal of atmospheric effects on the at-sensor

apparent temperature. Atmospheric effects include atmospheric (gases) interception of

some thermal radiation emitted by the surface and some thermal radiation emission by

the atmosphere towards the remote sensor and towards the land surface.

Leaf area index (LAI) is a measure of foliage density that plays a major role in

photosynthesis, groundwater-surface water interactions through ET (Summer and
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Jacobs 2005). In addition, the roughness length for momentum transfer (Zom) also

affects ET because it influences the surface turbulence, which is the key mechanism

of momentum exchange between the atmosphere and land surface (Yang and Friedl

2002). Borak et al. (2005) stated that Zom is the height above the surface at which the

mean logarithmic wind profile theoretically reaches zero. Both LAI and Zom remote

sensing-based models may be region-specific since soil background effects may

affect these models’ performance. Therefore, incorporation of locally developed

LAI and Zom models in METRIC is desirable to assess the ability of the ‘dT’

mechanism to accurately estimate daily ET.

The THP is a semi-arid region with heterogeneous landscapes in which irrigated

fields are surrounded by dryland crops, fallow land, and/or rangeland. Therefore,

the advection of hot air from dry surfaces is a significant source of energy that has a

major impact on ET from crop growing areas. For example, Tolk et al. (2006)

reported an average ET rate of 11.3 mm d21, measured with a large weighing

lysimeter, for irrigated alfalfa in Bushland, Texas, with ET for some days exceeding

15 mm d21 due to regional advection. The main objective of this study was to assess

the effects of different levels of radiometric surface temperature calibration on

METRIC ET estimation accuracy in the THP. We selected METRIC for its ability

to yield accurate ET estimations under advective conditions with minimal ground-

based weather data. In addition, the effect on estimated ET of locally developed LAI

and Zom models was also studied.

2. Materials and methods

2.1 Study area

This study was conducted at the Conservation and Production Research Laboratory

(CPRL), USDA-ARS located in Bushland, Texas, USA (figure 1). The geographic

coordinates of the CPRL are 35u119 N, 102u069 W, and its elevation is 1170 m above

mean sea level. For this study, a 30-m resolution Landsat 5 TM scene was used to

derive energy fluxes at the land surface. The scene path/row was 31/36 and was

acquired at 17:20 GMT (11:20 am Central Standard Time (CST) in the US) on 23

July 2006 (DOY 204). The TM band 6 image was captured at a coarser resolution of

120 m, and was re-sampled to 30 m by the image supplier. Soils around Bushland are

classified as slowly permeable Pullman clay loam soils. The major crops in the THP

are corn, sorghum, winter wheat and cotton. Weather conditions during the Landsat

5 overpass, at the Bushland-ARS grass reference ET weather station, which is a part

of the Texas High Plains ET Network (TXHPET 2006), included clear sky with

incoming short wave radiation of 907 W m22, air temperature of 29uC, low relative

humidity of 32%, wind speed of 3 m s21, and soil temperatures of 29uC and 28uC at

5 cm and 15 cm depth, respectively.

METRIC estimated ET values were verified by comparing them with soil water

mass change-based daily ET values from five monolithic precision weighing

lysimeters located at the CPRL (figure 2). Four large lysimeters (3 m length63 m

width62.5 m depth) were each located in the middle of 4.7-ha fields. In 2006, two

fields (SW and NW) were planted to dryland grain sorghum with the NW field

planted in clumps as part of another study. The irrigated SE and NE lysimeter fields

were planted to forage sorghum and corn, respectively. One lysimeter was 1.5 m by

1.5 m by 2.5 m deep and was located in the grass reference ET weather station field

(0.31 ha), (TXHPET 2006). Each of the four lysimeter fields was equipped with one
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net radiometer (Q*7.1, Radiation and Energy Balance Systems (REBS){ Seattle,

Washington) and one infrared thermometer (IRT) (2G-T-80F/27C, Exergen,

Watertown, Massachusetts) for measuring net radiation and surface temperature,

respectively. On the grass lysimeter, only net radiation was measured.

2.2 Lysimeter set-up

Each of the four large lysimeters at Bushland contains a monolithic Pullman clay

loam soil core. Change in the soil water mass was used for determining ET values.

Changes in lysimeter mass were determined using a data logger (model CR7-X,

Campbell Scientific, Inc., Logan, Utah) to measure and record the lysimeter load

cell (model SM-50, Interface, Scottsdale, AZ) with the signal sampled at a frequency

of 0.17 Hz (every 6 s). The lysimeters were calibrated using techniques similar to

those found in Howell et al. (1995). The lysimeter mass measurement accuracy in

water depth equivalent was 0.01 mm, as indicated by the root mean squared error of

calibration. The load cell signal was averaged for 5 min and composited to 60-min

means. The lysimeter mass data were reported on the midpoint of the 60 min, that is,

data were averaged from 0 to 60 min and reported at the midpoint of the averaging

period. Daily ET was calculated as the difference between lysimeter mass recorded

at 2330 h CST of one day and 2330 h CST of the next day to determine mass losses

(from evaporation and transpiration) to which lysimeter mass gains (from irrigation

or precipitation) were added. A vacuum pump regulated to 210 kPa provided

drainage, and the drainage effluent was held in two tanks suspended from each

lysimeter and weighed with load cells.

Figure 1. Landsat 5 TM path/row 31/36 scene (rectangle) covering an area underlaid by the
Ogallala Aquifer (irregular polygon) in the Texas High Plains (Panhandle). The USDA-ARS-
CPRL laboratory location is indicated by a dot.
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2.3 Satellite image radiometric and atmospheric calibration

METRIC requires radiometric and atmospheric calibration of satellite images for

estimating spatial ET. Detailed steps on the Landsat 5 TM radiometric calibration

procedures can be found in Chander and Markham (2003). In short, the digital

numbers (DN) stored in the satellite image were first converted into radiance (Lb), for

each band as Lb5(gain6DN) + bias). Then at-sensor or top-of-atmosphere (TOA;

exo-atmospheric) reflectance values for the shortwave bands were estimated.

Reflectance values were calculated by dividing the detected radiance at the satellite

(for each band) by the incoming energy (radiance) in the same shortwave band. The

incoming radiance is a function of mean solar exo-atmospheric irradiance, solar

incidence angle, and the inverse square of the relative earth-to-sun distance. In the

case of the thermal band, the spectral radiance values were converted into effective at-

satellite temperatures of the viewed earth-atmosphere system under an assumption of

unity for surface emissivity and using pre-launch calibration constants by means of an

inverted logarithmic formula. Subsequently, surface reflectance values were computed

after applying atmospheric interference corrections, on the TOA reflectance image,

for shortwave absorption and scattering using narrowband transmittance values for

each band as calibrated by Tasumi et al. (2005). They used radiative transfer models

such as SMARTS2 (Gueymard 1995) and MODTRAN3 (Berk et al. 1989) in their

calibration. Surface temperature was obtained after correcting the at-satellite effective

‘brightness’ temperatures for surface emissivity only.

Figure 2. Landsat 5 TM false colour image showing lysimeter locations at USDA-ARS-
CPRL facility in Bushland, TX.

COLOUR
FIGURE
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2.4 METRIC algorithm

In METRIC, ET is computed as a residual from the surface energy balance equation

as an instantaneous ET or latent heat flux (LE) as shown in equation (1). Rn is

calculated using surface reflectance and radiometric surface temperature (Ts)

derived from satellite imagery, near-surface vapour pressure from a nearby weather

station (WS), and Rs as explained below. Rn is the result of the surface energy budget

between short and long wave radiation terms, described as:

Rn~Rs;{aRs;zRL;{RL:{ 1{eoð ÞRL; ð2Þ

where RsQ is incoming shortwave radiation (W m22). In this study RsQ was not

estimated as indicated in Allen et al. (2005a, 2007a) but rather measured with a

pyranometer (model CMP 6, Kipp and Zonen, Bohemia, NY) installed at the

USDA-ARS-CPRL weather station (TXHPET 2006). Surface albedo, a, is a

function of surface reflectance values in the shortwave portion of the electro-

magnetic spectrum (a weighted average of reflectance in TM bands 1, 2, 3, 4, 5 and

7), and dimensionless; it is estimated following the procedure of Allen et al. (2007a).

RLQ is incoming long wave radiation (W m22) or downward thermal radiation flux

originated from the atmosphere, which was estimated using the Stefan-Boltzmann

equation and near surface air temperature as well as vapour pressure for sky

emissivity. In METRIC, RLQ is estimated using Ts and atmospheric (sky) thermal

emissivity (which is a function of atmospheric transmissivity for shortwave

radiation). RLq is outgoing long wave radiation (W m22), a function of Ts and

broadband surface thermal emissivity (eo, dimensionless). The eo term is a function

of biomass or LAI presence and was calculated using empirical equations developed

by Tasumi et al. (2005) based on soil and vegetation thermal spectral emissivities.

The (1–eo)RLQ term represents the fraction of incoming long wave radiation

reflected from the surface.

Soil heat flux was modelled as a function of Rn, vegetation index, Ts, and a for

near midday values (Bastiaanssen 2000):

G~ Ts{273:15ð Þ 0:0038z0:0074 að Þ 1{0:98 NDVI4
� �� �

Rn, ð3Þ

where NDVI is the Normalized Difference Vegetation Index [(R-NIR)/(R + NIR)],

R is reflectance in the red band and NIR is reflectance in the near infrared band.

Sensible heat flux is defined by the bulk aerodynamic resistance equation, which uses

aerodynamic temperature (Taero) and aerodynamic resistance to heat transfer (rah):

H~ra Cpa Taero{Tað Þ=rah, ð4Þ

where ra is air density (kg m23), Cpa is specific heat of dry air (1004 J kg21 K21), Ta is

average air temperature (K), Taero is average aerodynamic temperature (K), which is

defined for a uniform surface as the temperature at the height of the zero plane

displacement (d, m) plus the roughness length (Zoh, m) for sensible heat transfer, and

rah is aerodynamic resistance (s m21) to heat transfer from Zoh to Zm (height of wind

speed measurement, in m).

In METRIC, H is estimated without needing to know Ta or Taero; instead a

temperature difference (dT), a function of Ts, is used, as:

H~raCpa
dT

rah
ð5Þ
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where rah is calculated between two near surface heights, z1 and z2 (generally 0.1 and

2.0 m) using a wind speed extrapolated from some blending height above the ground

surface (typically 100 to 200 m) and an iterative stability correction scheme for

atmospheric heat transfer based on the Monin-Obhukov stability length scale (LMO,

similarity theory; Foken 2006). In this study, a height of 200 m was used in the

calculation of distributed friction velocity (u*), a term utilized in the estimation of H.

Allen et al. (2007a) explained that dT (K) represents the near-surface temperature

difference between z1 and z2, and that the indexing of dT to Ts does not rely on absolute

values of Ts, which allegedly reduces the error in calculating H substantially.

Equation (6) characterizes the relationship of dT to Ts (Bastiaanssen 1995).

dT~azb Ts, ð6Þ

where a and b are empirically determined constants. The determination of a and b in

equation (6) involves locating a hot (dry) pixel in a fallow agricultural field with large Ts

and a cold (wet) pixel with a small Ts (typically one in an irrigated agricultural setting)

in the remote sensing image. Once these pixels have been identified, the energy balance

of equation (1) can be solved for Hcold and Hhot as:

Hcold~ Rn{Gð Þcold{LEcold ð7Þ

Hhot~ Rn{Gð Þhot{LEhot, ð8Þ

where Hhot and Hcold are the sensible heat fluxes for the hot and cold pixels,

respectively. The hot pixel is defined as having LEhot50, which means that all available

energy is partitioned to H. However, LEhot may be non-zero and calculated according

to a soil water budget if significant rainfall has occurred shortly before the image

acquisition date. The cold pixel is assumed to have an LE value equal to 1.05 times that

expected for a tall reference crop (i.e. alfalfa), thus LEcold is set equal to 1.05 ETr lLE,

where ETr is the hourly (or shorter time interval) tall reference (like alfalfa) ET

calculated using the standardized ASCE Penman-Monteith equation (ASCE-EWRI

2005). A 1.05 coefficient was used to estimate LEcold as the cold pixels typically have an

ET rate of 5% larger than that for the reference ET (ETr) due to wet soil surface beneath

a full vegetation canopy that will tend to increase the total ET rate (Allen et al. 2007a).

The hot pixel was chosen after careful screening of fallow/bare agricultural fields

displaying high temperatures, high albedo and low biomass (low LAI); these values

are shown in Table A1 (Appendix A). With the calculation of Hhot and Hcold,

equation (5) was inverted to compute dThot and dTcold. The a and b coefficients were

then determined by fitting a line through the two pairs of values for dT and Ts from

the hot and cold pixels. These a and b values were initial estimates that were used in

an iterative stability correction scheme programmed in a Microsoft ExcelTM

spreadsheet, which after some iterations shows numerical convergence. The a and b

coefficients for each iteration were then exported to a model in Leica ERDAS

Imagine to obtain the final stability corrected H image.

Instantaneous LE image values were obtained using equation (1) and were

converted to ETi in mm h21 by division by lLE and rw. In METRIC, lLE is

calculated substituting Ta by Ts

ETi~3600 LE
�

2:501{0:00236 Ts{273:15ð Þ½ � 106
� �

1:0ð Þ
� �

ð9Þ

Reference ET fraction (ETrF) is the ratio of ETi to the reference ETr that is

computed from weather station data at overpass time (hourly average). The weather
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station information is explained in a subsequent section. Finally, the computation of

daily or 24-h ET (ETd), for each pixel, is performed as:

ETd~ETrF|ETr24 ð10Þ

where: ETr24 is the cumulative 24-h ETr for the day (mm d21).

2.5 Reference ET weather station data

For the calculation of ETr and ETr24 for alfalfa, weather data recorded by the

USDA-ARS (Bushland) reference WS located on a grass field was used (TXHPET

2006). The TXHPET reported hourly and daily weather data for the calculation of

the grass (ETo) and alfalfa (ETr) reference ET by means of the standardized ASCE

Penman-Monteith method (ASCE-EWRI 2005). ETr was 9.2 mm d21 and ETo was

7.3 mm d21 on DOY 204.

2.6 METRIC ET estimation evaluation

Considering the large range of surface temperatures and the potential impact that

atmospheric effects could have in determining accurate radiometric surface

temperature in semi-arid regions, a comparison between Ts calibrated using the

METRIC method and measured values using ground-based IRTs (surface emissivity

corrected) was performed. Also, at-sensor (at-satellite or TOA) surface brightness

temperatures were corrected for atmospheric effects and surface emissivity using

MODTRAN4 Version3 (Berk et al. 2003), including weather station-based atmo-

spheric profile, and results were compared with the same ground-based IRT readings.

For application of METRIC, radiometric surface temperature was estimated using

three different techniques: (a) corrected with a submodel provided in the METRIC

procedure that corrects at-sensor surface brightness temperatures for narrow-band

surface thermal emissivity only (named Ts(ME)); (b) at-sensor surface brightness

temperature values without any surface emissivity or atmospheric effects correction

(named TB); and (c) radiometric surface temperature corrected for atmospheric and

surface thermal emissivity effects with MODTRAN4 (named Ts(MO)). In addition,

Ts(MO) plus a THP-specific LAI model (Gowda et al. 2007b) and a locally adjusted

surface roughness for momentum transfer model (named Ts(MO2)) was used in the

estimation of ET. The THP-specific LAI model used in this study was:

LAI~8:768| NDVIð Þ3:616: ð11Þ

The surface roughness length for momentum transfer used in method Ts(MO2)

was obtained by calibrating the linear equation Zom5a + b LAI using Brutsaert’s

(1982) predicted Zom values (Zom50.123 hc), measured crop height (hc, m) and LAI

values (from the SE forage sorghum field). The intercept, a, for the linear Zom

equation, was constrained to a value of 0.004 m, as a minimum value for a bare soil

or fallow field in an agricultural setting.

Zom~0:004z0:035 LAI ð12Þ

Comparisons of predicted Ts, Rn, and ETd with measured values were made.

Estimates of LAI using the METRIC model (LAI(ME), equation (13)) and LAI

obtained using equation (11), called LAI(THP), were compared in order to

appreciate the differences in these models. For the verification of METRIC
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estimated surface albedo, estimates were compared to reference values derived from

the Kipp and Zonen net radiometers installed in lysimeter fields by dividing

incoming shortwave radiation by reflected radiation at satellite overpass time (11:20

am CST).

The LAI submodel provided in the METRIC algorithm is:

LAI MEð Þ~{ln 0:69{SAVIIDð Þ=0:59½ �=0:91, ð13Þ

where SAVIID is the Soil Adjusted Vegetation Index for southern Idaho

[SAVI5(1 + 0.1) (R2NIR)/(0.1 + R + NIR)].

Results of the comparison of ET using METRIC and ET at each lysimeter

location (one pixel value, as shown in figure 2) were reported as absolute differences

and in per cent errors:

Per cent error %ð Þ~ ET ME{ET Lð Þ|100=ET L, ð14Þ

where ET(ME) is the ET estimated by METRIC and ET(L) is ET derived from the

lysimeter’s water mass loss/gain data. A more comprehensive evaluation of ET

estimation errors (comparison of estimated/measured ET) was carried out

comparing mean bias error (MBE) and root mean square error (RMSE).

3. Results and discussion

3.1 Surface temperature

MODTRAN generated Ts(MO) values within the Landsat 5 TM scene ranged from

17.9uC at Ute Lake (north-eastern New Mexico, about 165 km west of Bushland,

Texas) to 46.4uC over bare soils, a difference of 28.5uC. Ts(MO) values compared

better with measured data than did Ts(ME) values. Errors of Ts(MO) values were

20.7uC (21.9%) and 20.2uC (0.4%) for NE and SE lysimeter fields, respectively,

while errors of the METRIC submodel (Ts(ME)) were 23.9uC (211.1%) and

(21.9%) for the same fields (table 1). A larger error was found with Ts(ME) on the

low biomass NE lysimeter field planted to corn. The low biomass on NE lysimeters

was due to late planting of corn (3 July). Corn had been initially planted on 11 May

but it suffered severe damage due to heavy hail and had to be re-planted. The larger

error for Ts(ME) may be because the Ts correction submodel in METRIC includes

only surface thermal emissivity correction, neglecting atmospheric interference

effects. In the case of TB, the temperature difference on the NE lysimeters was

220.8% and 28.0% on the SE lysimeter. Ts(MO2) values were not significantly

different than those of Ts(MO). Table 1 does not include data from the grass, NW

and SW lysimeter fields because IRT data were not available for DOY 204 on those

fields. The grass lysimeter did not have an IRT sensor.

3.2 Net radiation estimation

Remote sensing based Rn estimates (table 2), using inputs from the four different

methods (a, b, c, and d) resulted in larger bias for the uncalibrated TB method. Its

corresponding error was 59.0¡17.7 W m22 and only 25.3¡19.4 W m22 for

Ts(MO2) (average per cent errors are given in table 2). These results signify an

improvement in Rn estimates over the TB method results, of 0.5¡0.1% for Ts(ME),

1.1¡0.4% for Ts(MO), and 5.9¡0.2% for Ts(MO2) respectively. The MBE for

method Ts(MO2) was 50% lower than that with Ts(ME) indicating that with
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MODTRAN calibrated Ts and a region-specific LAI models may be needed for

improving accuracy of spatially distributed Rn estimates. Rn estimation errors

progressively decreased with greater Ts calibration (table 2). However, these

improvements on Rn estimates were not statistically significant.

Overestimation of Rn by Rn(ME) compared with Rn(MO2) was probably due to

errors introduced in the computation of RlwQ and Rlwq. In RlwQ calculation,
METRIC replaces Ta by Ts and estimates atmospheric (air) emissivity (ea) based on

an estimation of atmospheric transmissivity that only uses ground elevation with

respect to mean sea level instead of Ta and actual vapour pressure, as in the Brutsaert

(1975) model. In the Stefan-Boltzmann equation [ea s (Ta)4] used in the computation

of RlwQ, if Ts is used instead of Ta (Ts.Ta in our case) then a higher temperature will

be raised to the power of 4, thus augmenting the resulting RlwQ beyond the value that

would have been estimated had Ta been used. The result is that adding RlwQ to the

shortwave net radiation [(1–a) Rs] would yield a higher sum had the proper
temperature been used. For example, Rn estimate differences, for the SW lysimeters,

were 81.6, 78.3, 73.2 and 49.2 W m22 for Rn(TB), Rn(ME), Rn(MO), and Rn(MO2),

respectively. This field was planted to dryland sorghum and had low biomass (LAI of

0.4–0.5 m2 m22) and consequently displayed higher surface temperature than the

irrigated NE, SE, and grass lysimeter fields where errors were much lower. The

surface temperatures for the SW field were estimated to be 34.7uC using METRIC

and 37.9uC using MODTRAN calibrations. Thus, METRIC-based Ts was 3.2uC
lower than that estimated using MODTRAN, which resulted in underestimating
Rlwq, i.e. [eo s (Ts)

4]. Therefore, the Rlwq term in the net radiation budget was

smaller and this resulted in larger Rn than the measured value.

Table 1. Comparison of Ts(ME), TB, Ts(MO), and Ts(MO2) values with ground-based IRT
measurements (Ts(IRT)), at the time of satellite overpassa.

Ts (uC) Diffb (uC) Diff (%)

NE SE NE SE NE SE

Ts(IRT) 34.8 27.1 0.0 0.0 0.0 0.0
TB 28.8 25.1 26.0 22.0 220.8 28.0
Ts(ME) 30.9 26.5 23.9 20.6 212.6 22.3
Ts(MO) 34.1 27.3 20.7 0.2 22.1 0.7
Ts(MO2) 33.8 27.3 21.0 0.2 23.0 0.7

aTs(IRT) is ground-level infrared thermometer surface temperature (measured), TB is at-
sensor surface brightness temperature, Ts(ME) is METRIC-based surface temperature;
Ts(MO) is MODTRAN-based surface temperature; and Ts(MO2) is MODTRAN-based
surface temperature utilizing local LAI and Zom models.
bDiff5difference between observed and measured values.

Table 2. Net radiation estimation errors for different Ts calibration methodsa. Based on
comparison to net radiometer data from five lysimeters.

Statistic Rn(TB) Rn(ME) Rn(MO) Rn(MO2)

MBE (W m22) 59.6 56.8 53.1 25.3
RMSE (W m22) 17.7 17.2 15.5 19.4
MBE (%) 10.3 9.8 9.1 4.4
RMSE (%) 3.2 3.1 2.8 3.4

aRn(TB) is TB-based net radiation; Rn(ME) is Ts(ME)-based net radiation; Rn(MO) is
Ts(MO)-based net radiation; Rn(MO2) is Ts(MO2)-based net radiation.
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Figure 3 displays Rn values estimated using the four different methods. In this

figure, method Rn(MO2), i.e. Rn estimated with the Ts(MO2) method, compared

better to measured values. The maximum overestimation by the Ts(MO2) method

was 49.2 W m22 in the SW field planted to dryland grain sorghum, while the

minimum overestimation was 15.9 W m22 for the irrigated grass lysimeter field.

Results for Rn(MO2) matched well with measured Rn at the irrigated SE forage

sorghum field. The SE lysimeter’s field showed large biomass on DOY 204. It

should be noted that radiometric surface temperature corrections for atmospheric

interference are exponential, i.e. they increase exponentially as surface temperature

increases; also less correction is applied to lower surface temperatures and vice versa

(Chávez et al. 2005). The results shown in figure 3 and table 2 suggest that further

atmospheric correction is needed on the at-sensor surface brightness temperature

image. Better corrections may be attained with MODTRAN if atmospheric gas

concentrations are regularly updated in the software to better characterize actual

atmospheric conditions.

METRIC-estimated a matched measured values very closely (table 3). To validate

LAI, measured values at the SE field (forage sorghum) were used. On average

measured LAI was 3.9 m2 m22 for this field, hence an indication that the local model

(Gowda et al. 2007b) may have the ability to accurately estimate LAI for high

biomass fields, although both LAI(ME) and LAI(THP) underestimated the LAI by

about 54% for the NE corn field (table 3). This large LAI underestimation error on

sparse, low biomass vegetation may have contributed to net radiation estimation

Figure 3. Net radiation estimated using four different surface temperature methods.
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Table 3. Comparison of albedo and LAI estimates.

Lysimeter
Measured
albedo (a)

METRIC
albedo (a)

LAI(measured)
(m2 m22)

LAI(ME)a

(m2 m22)
LAI(THP)b

(m2 m22)

NE 0.17 0.17 0.8 0.35 0.38
SE 0.17 0.18 3.9 6.00 4.20
NW 0.16 0.16 N/A 0.30 0.33
SW 0.16 0.14 N/A 0.40 0.52
Grass — 0.18 N/A 2.30 2.98

aLAI(ME) is leaf area index estimated using the METRIC equation (13).
bLAI(THP) is leaf area index estimated using the Texas High Plains LAI equation (12).
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errors on the NE, NW and SW fields, and to errors in the estimation of G and H

fluxes.

3.3 Estimation of the dT function

Four distinct functions relating Ts to dT were found with different Ts corrections, as

highlighted in §2.6.

For Ts values corresponding to surfaces ranging from open water bodies (coldest)

to bare/fallow soils (hottest), it is evident that smaller dT values, i.e. (Taero–Ta), were

obtained as corrections to TB were made, i.e. surface emissivity correction followed

by atmospheric corrections (figure 4). A smaller regression slope was obtained using

Ts(MO) since corrections made were greater for higher surface temperature values.

In the case of Ts(MO2), the local LAI and Zom models contributed to decreasing dT

values even further, although the dT decrement was greater for smaller Ts values

than for larger values, when compared with dT values from the Ts(MO) line.

A sample of different inputs/outputs from estimating dT and H, for the Ts(ME)

method, is shown in Appendix A (tables A1 and A2). For the cold pixel H was

265.7 W m22, i.e. indication that advection occurred in the region (table A2). Thus,

11.2% more energy (on top of the available energy (Rn–G)) was added from local/

regional advected heat; thus resulting in an enhancement of ET in the same

magnitude.

Figure 4. Relationship between dT and Ts for different radiometric surface temperature
calibrations.

2348 J. L. Chávez et al.



3.4 Daily ET estimation

Comparisons of estimated ETd values with lysimeter data are shown in figure 5,

where ETd(lys) represents lysimeter data. In this figure, it appears that ETd(MO2)

(daily ET estimated using Ts(MO2)) better matched the measured values. This

method resulted in somewhat large errors, i.e. 0.4¡0.7 mm d21 or 15.9¡29.1%, but

similar to those from Ts(MO) and smaller than those from Ts(ME) and TB-based

methods. Ts(MO) resulted in similar errors of 0.4¡0.8 mm d21, while prediction

errors with methods Ts(ME) and TB were on average 7¡5% greater than those of

Ts(MO2) and Ts(MO) (table 4). ET prediction bias was larger for the NW lysimeter

irrespective of the method used for deriving surface temperature. This may be partly

due to errors in the estimation of aerodynamic resistance and surface roughness

length for the clumped grain sorghum in the NW lysimeter field.

When ETd results were analysed by excluding data from the NW lysimeters

(table 5), ET prediction errors decreased to 0.2¡0.35 mm d21 or 3.2¡7.4% for the

Figure 5. Remote sensing-based daily ET estimation using four different surface tempera-
ture calibration methods.

Table 4. Comparison of ETd for different Ts calibration methods using ET data from five
lysimeters.

Statistic ETd(TB) ETd(Ts)(ME) ETd(Ts)(MO) ETd(Ts)(MO2)

MBE (mm d21) 0.72 0.68 0.43 0.45
RMSE (mm d21) 0.94 0.88 0.79 0.71
MBE (%) 24.1 22.7 16.6 15.9
RMSE (%) 37.1 35.3 33.1 29.1
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ETd(MO2) method and to 0.1¡0.40 mm d21 (3.0¡7.7%) for the ETd(MO) method.

ETd(ME) and ETd(TB) methods on average showed 5¡5% larger errors than those

of ETd(MO2) and ETd(MO).

These results are evidence that the dT mechanism works well when TB is properly

corrected for atmospheric effects and surface emissivity; and when the aerodynamic

resistance, rah, is spatially estimated using locally developed LAI and Zom models.

This contradicts the findings by Allen et al. (2005b) and Tasumi et al. (2005) that the

dT mechanism cancels errors introduced by not calibrating Ts for atmospheric

effects with a radiative transfer model (and radiosonde data), and propagation of

those errors in the estimation of Rn and G.

Furthermore, when ETd was estimated using the Ts(MO2) method, the MBE was

0.0% for the irrigated SE-sorghum field, below 1.0% for the irrigated grass field,

22.3% for the SW field, while it was 14.2% for the NE field, which had lower

biomass (LAI,0.8 m2 m22, late planted silage corn). This is in agreement with Allen

et al. (2005b) that METRIC works better for larger ET rates than for midrange

values.

Finally, the spatial variability of daily ET is displayed in figure 6, where the

difference between irrigated and dryland regimes for sorghum and corn crops is

evident within the lysimeter fields. The ETd values were, 7.8 mm d21 for the irrigated

silage sorghum field (SE lysimeter area), 5.4 mm d21 for irrigated corn (NE lysimeter

area), 4.3 mm d21 for grain sorghum (SW lysimeter), 4.0 mm d21 for clumped grain

Table 5. Comparison of ETd for different Ts calibration methods using ET data from four
lysimeters (excluding lysimeter field NW data).

Statistic ETd(TB) ETd(Ts)(ME) ETd(Ts)(MO) ETd(Ts)(MO2)

MBE (mm d21) 0.37 0.35 0.11 0.20
RMSE (mm d21) 0.62 0.54 0.40 0.35
MBE (%) 8.28 7.50 3.00 3.17
RMSE (%) 12.66 11.32 7.74 7.44

Figure 6. Spatially distributed daily ET on 23 July 2006 covering part of the USDA-ARS-
CPRL and an adjoining private farm (centre pivots) to the west. The lysimeter fields are
marked within the rectangle.
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sorghum (NW lysimeters), and 7.6 mm d21 of ETd for the grass lysimeter field.

Greater ETd rates, up to 9.9 mm d21, can be observed on the centre pivot-irrigated

silage sorghum belonging to the private farm located to the west of the lysimeter

fields. In addition, ETd was 7.2–7.8 mm d21 for the sub-surface drip irrigation (SDI)

irrigated corn plots to the east of the lysimeter fields.

4. Conclusions

The METRIC algorithm was applied using a Landsat 5 TM image acquired on 23

July 2006 at 11:20 CST (17:20 GMT) hours. MODTRAN-calibrated Ts values

compared better with observed data than did values obtained using corrections

made with default METRIC algorithms. Errors in obtaining Ts with MODTRAN

were 21.9 and 0.4% for lysimeter fields NE and SE, respectively, while with

METRIC submodel, errors were 211.1 and 21.9%, respectively. Larger biases were

found for higher surface temperature on the low biomass NE corn lysimeter field,

perhaps due to uncertainties in mix soil/vegetation thermal emissivity values and
errors in the estimation of vegetation indices due to soil background effects.

ETd estimates closely matched measured values at four lysimeter locations

(MBE¡RMSE values were 0.4¡0.35 mm d21 or 3.2¡7.4%), showing discrepancies
for the clumped grain sorghum field (NW lysimeter). Considering the ET data of all

five lysimeters, the smallest ETd estimation error was 0.4¡0.7 mm d21

(15.9¡29.1%) for the Ts(MO2) method, where at-sensor brightness surface

temperatures were corrected for atmospheric effects and surface thermal emissivity

using the MODTRAN4 model, and when region-specific LAI and surface roughness

length models were applied. The largest bias in ETd estimation occurred when no

corrections were made to the satellite brightness surface temperature image. Thus,

the results obtained in this study indicate that proper satellite thermal band
calibration is needed, in conjunction with locally calibrated plant LAI and

aerodynamic roughness models, in order to obtain more accurate spatial crop ET

estimates.

Overall, the use of METRIC for the advective conditions of the THP is

promising.
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Appendix A: dT estimation input/output sample

Table A1 shows the input data used in the initial estimation of dT and H, for the

Ts(METRIC) method, for both hot and cold pixels under neutral atmospheric

conditions. Initial H and dT values were subsequently adjusted for the unstable
atmospheric conditions encountered for DOY 204 using the Monin-Obukhov length

scale iterative method. After five iterations, changes in rah for the hot pixel satisfied

the convergence criteria of 5% difference in rah for each iteration cycle. In addition,

table A2 reports the resulting final values for rah, horizontal friction velocity (u*),

LMO, dT, LE, and H for both cold and hot pixels.

Table A1. METRIC input table for H determination.

Variable Units Cold pixel Hot pixel

Coordinates X (UTM), m 763483.4 764730.6
Coordinates Y (UTM), m 3897854.6 3895811.8
Elevation m 1170 1170
Albedo dimensionless 0.21 0.24
LAI m2 m22 5.3 0.06
ETrF dimensionless 1.05 0
Ts K 291.6 315.1
Rn W m22 615.9 554.2
G W m22 29.3 130.2
Zom m 0.11 0.005
u (200 m) m s21 5.84 5.84

Table A2. METRIC atmospheric stability adjusted H.

Variable Unit Cold pixel Hot pixel

rah s m21 26.1 14.9
u* m s21 0.31 0.33
LMO m 33.4 26.6
dT K 21.63 6.49
LE W m22 652.3 0.0
H W m22 265.7 424.0
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