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Understanding soil water content, h, variability is important for monitoring and modeling of land surface
processes as well as land and water management practices. With regards to in situ h probes, it is some-
times assumed that a single local measurement can represent the larger domain, mostly for practical rea-
sons. But there is a substantial amount of variability in h at the field scale. As part of the Bushland
Evapotranspiration and Agricultural Remote Sensing Experiment 2008 (BEAREX08), a high-density sensor
network and intensive observational periods were developed to fully describe the h conditions at the sur-
face on the field scale, in support of the hydro-meteorological measurements being collected. A total of 20
h stations were distributed over an irrigated and a non-irrigated field (�10 ha each) and high-density
(�every 5 cm) transects were measured for a high-detailed record. The network was able to provide large
scale estimates of h with an accuracy (root mean square error, RMSE) of 0.035 m3/m3. The network was
temporally stable with the exception being immediately during and after irrigation events. Irrigation
caused significant increases in coefficients of variation due to the length of time (8–12 h) necessary to
irrigate the entire field. The spatial distribution of surface h was significantly affected by the row struc-
ture of the cotton plants, which was North–South in the field where transect measurements were made
with a row spacing of 76 cm. At scales <35 cm (approximately half the row spacing), the distribution was
correlated in the East–West direction. For scales larger than 35 cm in the East–West direction the corre-
lation decreased, but was still present. In the North–South direction this discontinuity was not present,
and h followed a power law distribution.

Published by Elsevier Ltd.
1. Introduction

Remote sensing technology exists that can estimate surface soil
water content, h, on large scales [22], but the validation of those
technologies requires ground-truth at field and larger scales. Large
scale in situ networks exist, such as the Soil Climate Analysis Net-
work [25] and the Climate Reference Network [23], but the individ-
ual stations consist of localized measurements. Most in situ
sensors only measure at small scales. Many current commercial
sensors respond to soil permittivity of a small volume of soil
immediately surrounding the sensor [8], often with a length scale
less than 10 cm. For validation studies, which use in situ data, it is
necessary to examine methodologies for scaling these small scale
(local) in situ data to large remote sensing footprints. Understand-
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ing the variability of h at the surface, impacts not only satellite val-
idation programs, but also field experimenters who must provide
accurate field estimates, and modelers who must understand dis-
tributions of h.

An earlier study of the spatial organization of h was conducted
by Rodriguez-Iturbe et al. [24] who used remote sensing data from
the Washita ’92 experiment [15]. They used aggregation analysis of
200-m aircraft remote sensing pixels along with ground sampling
at a 30-m resolution to determine that h followed a power law dis-
tribution at the field scale. Cosh and Brutsaert [5] continued this
analysis using semivariogram analysis and determined that h was
stationary within the field scale (�800 m) for this data set. One
of the first field based studies into the distribution and scaling of
h from local to field scales was conducted by Famiglietti et al.
[12]. This study collected high-density field samples of h during a
remote sensing field campaign and analyzed how h variability
changed depending on the scale. This study used descriptive statis-
tics to determine how the distribution of h varied in response to
precipitation events and the subsequent dry-down. This was
extended by Mohanty et al. [21] by using variogram analysis to
determine the characteristic length scales of h based on the
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sampling conducted during the Southern Great Plains Hydrology
Experiment in 1997 (SGP97) [16]. These studies brought the
understanding of h variability down to the meter scale, though
most of the land cover types were pasture or harvested winter
wheat, which generally exhibit isotropic behavior. There was little
to no row structure in those agricultural fields, which ignores a
large portion of agricultural land surface conditions.

These studies were limited by the datasets collected and were
only able to study h spatially on a scale as small as 1 m [1,12].
The present study was designed to collect high-resolution data un-
der various h conditions to determine the spatial distribution of h
from the measurement scale to the field scale for purposes of
informing large-scale estimation for remote sensing validation. To
do this, it is necessary to collect dense samples at the scale of the
instrument of study. In the case of most in situ networks, the instru-
ment scale is in the range of 5–30 cm. This study was conducted in
coordination with an intensive aircraft and meteorological flux
measurement experiment at the USDA-Agricultural Research Ser-
vice Laboratory in Bushland, TX. Various geostatistical and statisti-
cal analyses were applied to the data collected, to explore the
distribution of h on this fine scale. The results of this study will in-
form remote sensing validation campaigns on methodologies for
field scale estimation of surface h, by helping to define characteris-
tic length scales and spatial distribution characteristics.
2. Experiment design

The Bushland Evapotranspiration and Agricultural Remote
Sensing Experiment 2008 (BEAREX08) was conducted in the sum-
mer of 2008 near Bushland, Texas at the USDA-ARS Conservation &
Production Research Laboratory [11]. The BEAREX08 experiment
was developed to study at sub-field, field and watershed scales
how evaporation can be estimated and modeled using a variety
of techniques including aircraft thermal remote sensing, energy
flux measurements and in situ instrumentation. A key component
of this experiment was the monitoring and estimation of h at the
land surface. The experimental domain for h measurements was lo-
cated within a 450 m by 450 m cotton field, which had wheeled
sprinkler irrigation that operated on the eastern half of the field.
Intensive aircraft campaigns were organized to measure the energy
and surface fluxes over the domain to coincide with numerous
ground-based energy flux measurements [11].

Within these two experimental fields, referred to as WET (irri-
gated) and DRY (non-irrigated), there were 20 h sensors installed
in an X-pattern in each field (Fig. 1). These mini-stations consisted
of a Hydra Probe (Stevens Water Monitoring Systems, Inc., Port-
land, OR, USA) installed horizontally and sensing h across a depth
of 3–7 cm approximately. The reported accuracy of these sensors
in the Pullman soil at the study site is ±0.015 m3/m3, but with in-
ter-sensor variability of up to 0.07 m3/m3 [3]. This probe installa-
tion is similar to the surface sensing scheme of the Soil Climate
Analysis Network (SCAN) and Climate Reference Network (CRN)
stations in the U.S. [25,13]. This depth of installation is frequently
related to the 0–5 cm average volumetric h for purposes of remote
sensing validation [17].

As part of the water management program, the DRY cotton field
was irrigated a total of three times (to establish the crop) and the
WET cotton field was irrigated 17 times. The experiment started
with the planting of cotton on May 21, 2008 and the data time ser-
ies began on June 5, 2008, when equipment was installed. The time
series was sustained until mid November. There was substantial
vegetation growth as a result of above normal precipitation begin-
ning in mid August and this resulted in the time series becoming
intermittent in August as the foliage began to obscure the solar
panels, interrupting battery recharging.
3. Methods of experimentation

In addition to the static in situ network, manual sampling
collected high-density h estimates with a dielectric probe (Theta
Probe ML-2, Delta-T Ltd., United Kingdom). The sensing elements
of the probe measure approximately 3 cm in diameter and 6 cm
in length. The measurement volume is approximately 5 cm in
diameter. Several transects of 900–1000 sampling points were
collected in various directions, each sample separated by 5 cm,
providing a near spatially continuous transect. The transect
was sampled over the course of 1 h. This length of time would
not result in a significant loss of h during the time period of
sampling.

For purposes of validating the network for the overall BEA-
REX08 study period, a method for large-scale sampling was estab-
lished. The in situ network average for each field was calculated
using the calibration equations developed by Evett et al. [9], for
the local soils in the field of study. This calibrated network average
was compared to the large-scale h (as determined by gravimetri-
cally calibrated Theta probe sampling). Five days of intensive sam-
pling (>60 samples) with the Theta probe were conducted for each
field (WET and DRY).
4. Experimental analysis

Four different methods of investigation were used to explore the
spatial data collected during BEAREX08. Initially, the quality of the
network was evaluated using the root mean square deviation of the
network average as compared to large-scale h measurements using
the thermogravimetric method [6]. The thermogravimetric method
was established as the primary requirement for ground truth of h
estimates by NASA and ESA for their missions [7,19,22]. Temporal
stability analysis was used to investigate the persistence of the h
patterns in the field and what affects these patterns. Semivariogram
analysis was used to explore the characteristic length scales in-
volved at the sampling scale in the landscape. Finally, aggregation
analysis was used to consider if the power law distribution de-
scribed surface h and at what scales.

4.1. Temporal stability

Once it was determined that the network could accurately rep-
resent the domain, we sought to determine if the h pattern was
persistent in time, or temporally stable. Demonstrated by Vachaud
et al. [26], temporal stability analysis is a useful tool for analyzing
the spatial distribution of h and for providing quality assurance on
a sensing network. The basis of the analysis is the calculation of the
mean relative difference function. The mean relative difference, d1,
is defined as

d1 ¼
1
t

Xt

j¼1

Si;j � Sj

Sj

ð1Þ

where Si,j is the jth sample at the ith site of n sites within the field
and Sj is the computed average among all sites for a given date and
time, j (j = 1 to t). The mean relative difference compares the value
at a particular site to the average over the area of study at that in-
stance in time. It determines if a location is consistently greater or
less than the mean and how variable that relationship is as deter-
mined by the standard deviation of the relative differences (SDRD),
defined as
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Fig. 1. Installation diagram for the BEAREX08 soybean field. The label ‘‘Hyda Probe Station’’ indicates locations of Hydra Probe installation horizontally centered at 5-cm
depth. The label ‘‘Profiles’’ indicates locations where Hydra Probe sensors were installed centered at the 5-cm depth and at deeper depths to 40 cm.
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A location is temporally stable if it has a low SDRD (for this
study, approximately less than 0.75 m3/m3), such that there is a
consistent, though potentially biased relationship between the site
and the overall average. A site is representative of the large-scale
average if its di is near zero. A large di (positive or negative) is a
potentially correctable problem, whereas a large SDRD is not for
the purposes of extrapolation. It is possible to detect anomalous
locations with this analysis, by assessing the SDRD in relation to
the other SDRD values, and examining the dynamic ranges of the
h estimates.

4.2. Semivariogram analysis

The semivariogram is a common geostatistical tool, which has
been used to study h variability [2,5,18]. The semivariogram, c(h),
is the expected value of the square of the increments of a function,
Z(x), and is defined as

cðhÞ ¼ 1
2Np

XNp

i

ZðxiÞ � ZðxiþhÞ½ �2 ð3Þ

where h is the separation distance for location xi and xi+h [18]. The
semivariogram is often normalized by the variance and modeled
to summarize the underlying function Z(x). For this study, a power
law distribution was hypothesized [20], and characterized by

cðhÞ � h2Ha

where Ha is the Hausdorff exponent. As the exponent approaches
zero, the distribution becomes more homogeneous and spatially
stationary. The distance at which the slope becomes zero is the cor-
relation length.

4.3. Aggregation analysis

To study the effect of sampling scale on mean and variance esti-
mation, aggregation analysis was conducted. Following the proce-
dures established by Rodriguez-Iturbe et al. [24] and Hu et al. [14],
the variance was calculated for a sampling transect at the sampling
resolution. Next, the data series was aggregated to a lower resolu-
tion and the variance was recalculated. The process was repeated
and the results plotted as variance versus the resampled resolu-
tion. The smallest scale in this study was 5 cm and analysis was
conducted to 1 m. How the variance changed with sampling scale
provided insight into how h was organized spatially. Previous stud-
ies have observed a power law decay of the variance with sampling
scale, but none have analyzed data down to the scales in this study.
5. Results of network analysis

The first set of analyses was conducted on the Hydra Probe Net-
work, which was installed to support activities at BEAREX08. Evett
et al. [9] developed a calibration for the probes used in the network
and this calibration was applied to this dataset. Five days of inten-
sive thermogravimetric h sampling were conducted throughout the
summer of 2008 to provide a more thorough estimate of the large
scale mean of h. The RMSE for the network average as compared
with the large scale field average was 0.035 m3/m3. Fig. 2 is a time
series plot of the field averages along with the precipitation and
irrigation patterns. The large-scale physical sampling averages
are also plotted. It was determined that the network average could
not be practically improved upon, and further calibration of the
Hydra Probe network was unnecessary for the purposes of this
experiment. Station 3 (in the WET field) was not included in this
study, because of it contained a faulty sensor, which resulted in
an inconsistent data record. When computing the errors on the
field basis, the WET field had an RMSE of 0.054 m3/m3 and the
DRY field had an RMSE of 0.017 m3/m3. The larger errors for the
WET field were investigated further below.

It became evident that there was a very different h distribution
between the WET field and the DRY field, depending on the event
considered. This difference was evidenced by a plot of the time
series of the coefficients of variation for each network (Fig. 3).
For precipitation events, in both fields CV increased slightly, but
for irrigation events, the WET field CV dramatically increased in
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Fig. 4. Mean relative difference plots for the DRY and WET networks.

Fig. 2. Time series of the volumetric soil water content averages for the DRY and
WET fields.
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comparison with the DRY field. This was a result of the type of irri-
gation used in the study. The wheeled sprinkler assembly moved
slowly across the field, taking between 8 and 12 h to cover the en-
tire surface depending on the depth of water applied. This caused
the surface to have a large degree of variability in the 24 h after
irrigation.

A temporal stability analysis was conducted on each of the net-
works (WET and DRY) separately, and it was observed that each
network demonstrated temporally stable characteristics (Fig. 4).
At least qualitatively, the h patterns were persistent, indicating
that some locations in the network did and some did not represent
the overall mean h. The variation in mean relative difference was
approximately three times larger in the DRY field than in the
WET field. This result agrees with that of Evett et al. [10] who
found that variability was larger in drier soils for the dielectric sen-
sors that they studied. To further assess the spatial characteristics
of the field, semivariogram analysis must be employed.
5.1. Results of high density sampling analysis

To study the measurement scale, a series of high-density sam-
pling transects were conducted with Theta Probes. Factory calibra-
tion for the Theta Probe yielded an RMSE of 0.056 m3/m3, but after
gravimetric calibration, the RMSE was reduced to 0.024 m3/m3,
following Cosh et al. [4]. Fig. 5 shows a comparison of the
Fig. 3. Time series of coefficients of variation
uncalibrated and calibrated Theta Probe measurements compared
to gravimetrically-based volumetric h.

A total of six transects were available for study after quality
control eliminated several of the other transects collected during
the experimental periods. Table 1 contains a description of the
transects and their characteristics. East–West transects crossed
over the cotton plant rows and North–South transects went along
the row, approximately 1=4 of the distance between plant rows.
5.2. Semivariogram results

Semivariograms are presented in Fig. 6 and have been scaled by
the variance of each transect to account for differences between
sampling dates. The figure is presented in log–log form, which re-
veals how the distribution obeys a power-law by the degree to
which it follows a straight line. The cotton plants were arranged
in North–South rows and in the WET field, there was significant
microtopography, such that the plant rows were nearly 20 cm
higher in elevation than the interrow surface. The row spacing
was approximately 76 cm, and this was evident in the East–West
with precipitation and irrigation plotted.



Fig. 6. Semivariograms of the

Fig. 5. Comparison of soil water content estimates for factory (uncalibrated) and
calibrated Theta Probe functions. RMSE for uncalibrated is 0.056 m3/m3 and for
calibrated is 0.024 m3/m3.

Table 1
Sampling characteristics of the high density transects. Aggregation coefficient refers
to the exponents of the relationship on a log–log plot.

Field Date Direction Number of points Aggregation coefficients

WET 6/27/08 EW 907 �0.387/�0.803
WET 6/27/08 NS 900 �0.247
WET 7/24/08 NS 1048 �0.267
WET 7/27/08 EW 1048 �0.455/�0.752
DRY 7/23/08 EW 1048 �0.351/�0.940
DRY 7/23/08 NS 1048a �0.402

a A transect with quality control measures employed.

M.H. Cosh et al. / Advances in Water Resources 50 (2012) 55–61 59
semivariograms, which exhibited a characteristic length scale of
approximately 35 cm and reached a sill after this length. Transects
in the North–South direction did not exhibit this same length scale
and also exhibited non-stationarity.
5.3. Aggregation results

The same characteristic length scale was observed in the East–
West direction when examining the results of the aggregation
analysis. Fig. 7 shows how the variance changes as the resolution
of the sampling is reduced from the maximum density of 5 cm to
1 m for sampling on 27 June 2008 in both the East–West and
North–South directions in the WET field. On a log–log plot, at
approximately 35 cm, there was a break in the slope of the East–
West transect. The slope break was not evident in the analysis
for the North–South transect, which is along the row direction. Fur-
thermore, the two variances became approximately equal at
60 cm, which was relatively close to the row spacing of 76 cm.
These slopes are referred to as the aggregation coefficients and
are the exponents on the power-law plots and are shown in Table 1.
Similar results were found for the aggregation variances of the
other transects. For the East–West transect, the power law coeffi-
cient was approximately �1 for distances greater than 0 cm to
1 m for this date, which is indicative of a spatially independent
identically distributed process. For the other East–West transects,
this coefficient ranged between �0.4 and �1.0. For distances be-
tween 5 cm and 35 cm in the East–West transects, the coefficient
ranged between �0.2 and �0.4, and this was similar for the
North–South transects. For perspective, a coefficient of 0 is a com-
pletely correlated variable and �1 indicates a completely random
process. For the majority of transects in this study, h followed a
power law distribution indicating spatial correlation for two dis-
tinct scales.
six sampling transects.



Fig. 7. The aggregation variance cascade with increasing aggregation scale for an
east west transect for the WET field on 6/27/08 and the DRY field on 7/23/08,
respectively.
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6. Conclusions

In review, the stability and distribution of h was determined
from the measurement scale to the field scale for the BEAREX08
study domain. The h patterns in the agricultural fields were persis-
tent during the study period, as demonstrated by the temporal sta-
bility analysis. This shows that it is possible to have a stable soil
moisture pattern within an agricultural field, which will have an
impact on the ability to improve efficiencies in field sampling of
h. The variability, as demonstrated by the coefficient of variation,
increased in the irrigated field after irrigation because of the slow
temporal variations in water content input. Irrigation was a long
process, taking up to 12 h, while precipitation was relatively quick,
providing a more uniform input. The ability of the in situ network
to accurately represent the surface was not impacted because there
was a spatial distribution of sensors across the field. The variability
of water content across the surface, however, was strongly im-
pacted during irrigation events. It is concluded that a large number
of h in situ stations are necessary to monitor irrigated fields if the
intent is to capture the spatial domain of the field under the irriga-
tion equipment during and for a period of time after the irrigation.
In this study, the period of time after an irrigation, during which
spatial variation in water content remained strong, was approxi-
mately three times the duration of the irrigation event.

Using semivariogram analysis on the high density dataset, it
was determined there was a characteristic length scale of
approximately 35 cm across the planting rows, which coincided
with about one half the row spacing. This finding was supported
by aggregation analysis, which also found that within this length
scale h followed a power law distribution with a coefficient of
approximately 0.25. This finding is in agreement with previous
studies [14]. Beyond this length scale, the correlation decreased,
but maintained some amount of correlation more than a random
process. This length scale is critical to large-scale sampling designs
often used by remote sensing campaigns to characterize the land
surface. It also sets the minimum separation distance for small
impedance probes (�5 cm) such as those used in this study and
in large scale in situ networks. This will impact validation cam-
paigns, which often make assumptions of how in situ sensors rep-
resent large-scale averages. Modelers will also benefit from the
increased understanding of the power law distribution of surface
h. These results, however, may be somewhat soil and farming sys-
tem dependent, so should be combined with those from previous
and future studies in assessing sampling needs for validation
campaigns.
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