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Abstract.  
Daily evapotranspiration (ET) maps would significantly improve assessing crop water requirements especially 
in Texas High Plains (THP) where supply of irrigation water is limited. ET maps derived from satellite data with 
daily coverage such as MODIS and GOES sensors are inadequate, because their thermal pixel size is larger 
than individual agricultural fields. However, there exists an opportunity to use simultaneously acquired high 
resolution visible, near-infrared, and shortwave-infrared images from MODIS, and thermal-infrared images from 
other high resolutions sensors such as LANDSAT 5 Thematic Mapper (TM) or ASTER to improve spatial and 
temporal resolution of ET maps. Image downscaling methods are useful to improve spatial resolution by 
examining relationships between simultaneously acquired coarser thermal and finer non-thermal datasets. In 
this study, the TsHARP, an image downscaling technique, was evaluated for its capability to downscale land 
surface temperature (LST) images for ET mapping. LANDSAT 5 TM images taken from a southern part of the 
THP area were utilized to implement TsHARP. For this purpose, we developed a synthetic image with a spatial 
resolution of 960x960 m using TM based 120x120 m LST image. The 960x960 m resolution was used to mimic 
a LST image derived from MODIS thermal data. TsHARP was implemented to develop a LST image at 
120x120 m resolution using a statistical relationship between LST and normalized difference vegetation index 
(NDVI). Comparison of downscaled 120x120 m LST image against original LST image from TM data yielded a 
correlation coefficient of 0.93.Results indicate that TsHARP has the potential to be used to downscale LST 
images with simultaneously acquired high resolution NDVI image derived from MODIS data. 
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Introduction 
Evapotranspiration (ET) is a critical element for energy, hydrologic, carbon, and nutrient cycles 
and a key component of water balance in soil-vegetation-atmosphere continuum (Yang et al., 
2006). It includes water evaporation from land and water surfaces and transpiration by 
vegetation (Gowda et al., 2008). It is important to agriculture as it is the major consumptive use 
of irrigation water and precipitation on agricultural land. Attempts to improve water use efficiency 
for irrigated lands can be based on reliable ET maps provided with high spatial and temporal 
resolutions. Remote sensing based ET models are better suited, compared to other 
conventional techniques, for estimating crop water use from field to regional scale (Allen et al., 
2007; Gowda et al., 2008).  

Remote sensing based energy balance algorithms are commonly used for mapping ET at a 
regional scale. Energy balance method is based on the rationale that ET is a change of the 
state of water using available energy in the environment for vaporization (Su et al., 2005). This 
method uses remotely-sensed surface reflectance in the visible (VIS) and near-infrared (NIR) 
portions of the electromagnetic spectrum and surface temperature (radiometric) from a thermal-
infrared (TIR) band. This approach is implemented in energy balance algorithms such as 
Mapping Evapotranspiration with Internalized Calibration (METRIC; Allen et al., 2007) and 
SEBAL (Bastiaanssen et al., 1998).  

Remote sensing energy balance algorithms require thermal data for estimating ET. However, 
thermal data from satellite-based sensors often provide coarser spatial resolutions than other 
non-thermal bands such as VIS, NIR, and shortwave-infrared (SWIR) bands (Gowda et al., 
2008). ET maps derived from remote sensing data acquired by satellite-based sensors with 
daily coverage such as Moderate Resolution Imaging Spectroradiometer (MODIS), 
Geostationary Operational Environmental Satellite (GOES), and Advanced Very High 
Resolution Radiometer (AVHRR) are too coarse to be useful in agricultural regions because 
pixel size of thermal data is larger than individual fields in most cases causing significant errors 
in ET estimation (Tasumi et al., 2006). The errors in the estimated ET are partly due to the 
presence of pixels having multiple land uses/vegetation types with significant differences in 
cover, roughness and/or moisture content (Kustas et al., 2004). This condition is more common 
in arid and semi-arid regions such as Texas High Plains where fully irrigated fields are usually 
surrounded by an extremely dry landscape. Therefore, there is a research need to utilize 
simultaneously acquired high resolution VIS, VNIR and SWIR images from the MODIS as well 
as data from other sensors such as Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) and Land Remote-Sensing Satellite (LANDSAT) 5 Thematic Mapper (TM) 
to scale up the ET maps (in terms of frequency and spatial resolution). Limited research has 
been done to develop and evaluate existing downscaling techniques to improve spatial 
resolution of surface temperature or resulting ET maps. 

Numerous downscaling methods can be found in the literature (Gorenberg et al., 2001; Norman 
et al, 2003; Kustas et al., 2003; Liu and Pu, 2008; Trishchenko et al., 2006). However, most of 
these techniques are not developed and evaluated for downscaling surface temperature images 
or ET maps. The three methods specifically developed for downscaling surface temperature 
maps are Disaggregated Atmosphere-Land EXchange Inverse model (DisALEXI; Norman et al., 
2003), Disaggregation of radiometric surface temperature (DisTrad; Kustas et al., 2003) and 
Thermal sHARPening (TsHARP; Agam et al., 2007). DisALEXI disaggregation procedure was 
proposed by Norman et al. (2003) to bridge the gap in spatial resolution between 
micrometeorological measurements and coarse scale remote sensing derived surface energy 
fluxes for model evaluation purposes. This downscaling algorithm was based on the blending 
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height concept that where wind speed and air temperature can be treated as uniform over the 
landscape (Wieringa, 1986). DisTrad (Kustas et al., 2003) is a simple technique for downscaling 
radiometric surface temperature images using a statistical relationship between normalized 
difference vegetation index (NDVI) and radiometric surface temperature. Agam and colleagues 
refined DisTrad with different linear and nonlinear statistical relationships between NDVI and 
radiometric surface temperature and renamed the method as TsHARP (Agam et al., 2007). 
Therefore, the objective of this paper was to evaluate the TsHARP method for its ability to 
downscale the spatial resolution of surface temperature images from 960 m to 120 m.  

Description of DisTrad/TsHARP 
DisTrad is based on the assumption that a unique statistical relationship between land surface 
temperature (LST) and vegetation indices exists at multiple spatial scales, largely related to 
percent vegetation cover. This is supported by well-documented evidence that an inverse 
relationship exists between percent ground cover and surface temperature (Badeck et al., 
2004). However, the slope of this statistical relationship varies with land cover type and climatic 
conditions (Karnieli et al., 2006). Consequently, these statistical relationships are site- and 
image-specific (Agam et al., 2007). One of the limitations of this method is that it neglects the 
effects of spatial variability in soil moisture (Kustas et al., 2003). For example, water bodies in 
the image do not conform with the inverse LST-NDVI relationship.  

Kustas and others (2003) employed the DisTrad approach for downscaling at 20-250 m 
resolutions using high resolution airborne imagery collected over the Southern Great Plains. 
They reported an accuracy of 1.5oC for MODIS NDVI pixel resolution. However, at the 
ASTER/LANDSAT resolutions, DisTrad results were no more reliable than assuming uniformity 
within the coarser LST pixels. Anderson and colleagues (2004) applied DisTrad and DisALEXI 
algorithms on LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) (30-60m spatial 
resolutions) and GOES/AVHRR (5 km) data to disaggregate regional scale (1000 m) heat fluxes 
to micrometeorological scales (10-100 m). An effort was also made to introduce “convolved 
sharpening method” (CS) to further improve downscaling. The CS was used mainly to reduce 
boxlike chunk pixels in the resultant sharpened images derived with DisTrad by smoothing out 
residuals before being returned into the disaggregated image. However, implementing CS did 
not provide much different results by visual inspection, neither did CS improve percent error 
(9.2% from DisALEXI-CS vs. 9.0% from DisALEXI-DisTrad) or Root Mean Square Difference 
(RMSD) (34.6 W m-2 from DisALEXI-CS vs. 34.2 W m-2 from DisALEXI-DisTrad) in the 
estimation of instantaneous surface energy fluxes. Modeled surface energy fluxes from 
DisALEXI were in agreement with measured data within 10% relative error on an instantaneous 
basis and 15% for daytime model run. High daytime estimation error was probably caused 
partially by diurnal changes in the surface evaporative fraction and amplification on eddy 
covariance measurement during daily or annual time scales (Anderson et al., 2004).  

In 2007, Agam and others explored alternative sharpening basis functions to refine DisTrad for 
downscaling surface temperature pixels at resolutions finer than 100 m and renamed the 
method as TsHARP (Agam et al., 2007). In their version, they explored linear and non-linear 
transformation of NDVI values associated with percent cover. However, their attempt showed 
negligible improvement over DisTrad. For example, disaggregation of 960 m resolution 
simulated MODIS thermal images to 240 m gave root mean square error (RMSE) of 0.67-
1.35oC whereas no sharpened images produced RMSE of 1.25-2.12oC. Further, disaggregation 
of simulated LANDSAT 60 and 120 m resolution thermal images to 30 m yielded 1.80-2.39oC, 
which is a little higher than that for MODIS images. No or minimum improvement in the 
disaggregation results were obtained due to the fact that percent cover is highly correlated to 
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NDVI and replacing NDVI with percent cover or combination of both may not improve the 
predictive capability of the regression model.    

Methodology 
This study was implemented using NDVI and surface temperature images derived from a 
LANDSAT 5 TM image acquired over the Texas High Plains (THP) during the 2007 summer 
growing season. For this study, we selected a southern part of the THP. This area was selected 
because of presence of circular irrigated fields surrounded by extremely dry landscape. Major 
crops grown in the study area are sorghum, winter wheat, cotton, and corn. The LANDSAT 5 
TM data (Path 31 and Row 36) acquired on July 10, 2007 was obtained at the USGS website 
http://eros.usgs.gov/#Find_Data/Products_and_Data_Available/TM). Implementation of the 
TsHARP approach was done in six steps: (1) develop synthetic NDVI and surface temperature 
datasets from LANDSAT 5 TM image that is comparable to 120 m NDVI and MODIS based 
surface temperature (960 m) images; (2) select a subset of pixels from a finer image where 
NDVI is uniform, (3) aggregate the NDVI to develop a coarser resolution pixel that matches with 
LST pixels, (4) develop a statistical relationship between coarser resolution NDVI and LST, (5) 
use the resulting statistical relationship to estimate LST at both coarser and finer resolutions 
using respective NDVI values, and (6) finally, add the difference between the observed and 
predicted LST at the coarser resolution to the finer resolution LST image. The last step is 
expected to account for divergence of the retrieved temperatures from the observed 
temperature due to factors other than percent cover such as spatial variability in soil moisture.  

An image including the area of interest was clipped using ERDAS1 Imagine software for the 
easiness of representation of data. We developed a synthetic image with a spatial resolution of 
960x960 m using LANDSAT 5 TM based 120x120 m LST image. For the LST calculation, the 
spectral radiance values were recalculated into effective at-satellite temperatures of the viewed 
earth-atmosphere system under an assumption of unity for surface emissivity and using pre-
launch calibration constants by means of an inverted logarithmic formula. Furthermore, surface 
reflectance values were estimated after applying atmospheric interference corrections for 
shortwave absorption and scattering using narrowband transmittance values for each band as 
calibrated in Tasumi et al. (2005). The LST was acquired after correcting the at-satellite 
effective ‘brightness’ temperatures for surface emissivity (Allen et al., 2007). Implementation of 
the DisTrad/TsHARP was done within the MATLAB2 environment.  The correlation coefficient 
and RMSE were calculated to evaluate the performance of TsHARP approach. 

Results and Discussion 
TsHARP was successfully implemented within the MATLAB environment. A linear regression 
model was developed between NDVI and LST at a spatial resolution of 960 m (Fig. 1). It yielded 
an R2 value of 0.63 with a slope and intercept of -23.55°C and 42.05°C, respectively. 
Comparison of the observed and predicted LST values (Fig. 2) gave a good R2 of 0.87 with a 
RMSE of 1.90ºC. The RMSE value in this study was similar to that reported in Agam et al. 
(2007). 
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Figure 1. Regression relationship between NDVI and land surface temperature (LST) at 

960x960 m spatial resolution (coarser resolution). 

 
Figure 2. Regression relationship between observed and predicted land surface temperature 

(LST) at 120x120 m spatial resolution (finer resolution) derived from a 960x960 m spatial 
resolution. 

Fitting methods among linear, quadratic, cubic, and polynomial fits were tested against data of 
NDVI and LST. The correlation was obtained based on computed NDVI and LST images at 



 

6 

960x960 m resolution (Fig. 1). The result showed that there was a strong linear relationship 
between NDVI and LST compared to other fitting methods (data not shown).  

Summary 
ET maps derived from satellite data such as MODIS, AVHRR, and GOES sensors are known to 
be inadequate for irrigation management if the spatial resolution is too coarse. This is caused by 
the fact that spatial resolutions of the thermal band pixels from these sensors are coarser than 
most individual agricultural fields and represent more than one land use or water management 
unit. This limitation is further extended by the fact that irrigated fields in semi-arid regions like 
Texas High Plains are usually surrounded by extremely dry landscapes. Fortunately, the pixel 
sizes of non-thermal band data are finer than that of the thermal-infrared data. Therefore, an 
opportunity exists to use simultaneously acquired high spatial resolution VIS, NIR and SWIR 
images from satellite-based sensors to improve spatial and temporal resolution of ET maps. In 
this study, the TsHARP method was implemented on a LANDSAT 5 TM image. A linear fit was 
chosen to obtain the best regression relationship between NDVI and LST at 960x960 m spatial 
resolution among different fitting methods. In general, TsHARP has the potential to be used for 
downscaling coarser surface temperature images using simultaneously acquired high resolution 
NDVI images.  

References 
Agam, N., W. P. Kustas, M. C. Anderson, F. Li, and C. M. U. Neale, 2007. A vegetation index 

based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 107: 
545-558. 

Allen, R. G., M. Tasumi, and R. Trezza, 2007. Satellite-based energy balance for mapping 
evapotranspiration with internalized calibration (METRIC)-Model. J. Irrig. Drain. E.-
ASCE. 133: 380-394. 

Anderson, M. C., J. M. Norman, J. R. Mecikalski, R. D. Torn, W. P. Kustas, and J. B. Basara, 
2004. A multiscale remote sensing model for disaggregating regional fluxes to 
micrometeorological scales. J. Hydrometeorol. 5: 343-363. 

Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag, 1998. A remote 
sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol. 
212-213: 198-212. 

Badeck, F.-W., A. Bondeau, K. Böttcher, D. Doktor, W. Lucht, J. Schaber, and S. Sitch, 2004. 
Responses of spring phenology to climate change. New Phytol. 162: 295-309. 

Gorenburg, P. I., D. McLaughlin, and D. Entekhabi, 2001. Scale-recursive assimilation of 
precipitation data. Adv. Water Resour. 24: 941-953. 

Gowda, P. H., J. L. Chavez, P. D. Colaizzi, S. R. Evett, T. A. Howell, and J. A. Tolk, 2008. ET 
mapping for agricultural water management: present status and challenges. Irrigation 
Sci. 26: 223-237. 

Karnieli, A., M. Bayasgalan, Y. Bayarjargal, N. Agam, S. Khudulmur, and C. J. Tucker, 2006. 
Comments on the use of the vegetation health index over Mongolia. Int. J. Remote 
Sens. 27: 2017-2024. 

Kustas, W. P., J. M. Norman, M. C. Anderson, and A. N. French, 2003. Estimating subpixel 
surface temperatures and energy fluxes from the vegetation index-radiometric 
temperature relationship. Remote Sens. Environ. 85: 429-440. 



 

7 

Kustas, W. P., F. Li, T. J. Jackson, J. H. Prueger, J. I. MacPherson, and M. Wolde, 2004. 
Effects of remote sensing pixel resolution on modeled energy flux variability of croplands 
in Iowa. Remote Sens. Environ. 92: 535-547. 

Liu, D. and R. Pu, 2008. Downscaling thermal infrared radiance for subpixel land surface 
temperature retrieval. Sensors 8: 2695-2706. 

Norman, J. M., M. C. Anderson, W. P. Kustas, A. N. French, J. Mecikalski, R. Torn, G. R. Diak, 
T. J. Schmugge, and B. C. W. Tanner, 2003. Remote sensing of surface energy fluxes at 
101-m pixel resolution. Water Resour. Res. 39, 1221, doi:10.1029/2002WR001775. 

Su, H., M. F. McCabe, E. F. Wood, Z. Su, and J. H. Prueger, 2005. Modeling evapotranspiration 
during SMACEX: Comparing two approaches for local- and regional-scale prediction. J. 
Hydrometeorol. 6: 910-922. 

Tasumi, M., R. Trezza, R. G. Allen, and J. L. Wright, 2005. Operational aspects of satellite-
based energy balance models for irrigated crops in the semi-arid US. J. Irrig. Drain. Syst. 
19: 355-376. 

Tasumi, M., R. G. Allen, and R. Trezza, 2006. Calibrating satellite-based vegetation indices to 
estimate evapotranspiration and crop coefficients. In: Wichelns, D. and Anderson, S. S. 
(eds.), In Proceedings of the 2006 USCID Water Management Conference, Ground 
water and surface water under stress: competition, interaction, solutions. 103-112. 
USCID, Denver, CO. 

Trishchenko, A. P., Y. Luo, and K. V. Khlopenkov, 2006. A method for downscaling MODIS land 
channels to 250 m spatial resolution using adaptive regression and normalization. 
Proceedings of SPIE – The International Society for Optical Engineering, 6366, Art. No. 
636607. 

Yang, F., M. A. White, A. R. Michaelis, K. Ichii, H. Hashimoto, P. Votava, A-X. Zhu, and R. R. 
Nemani, 2006. Prediction of continental-scale evapotranspiration by combining MODIS 
and AmeriFlux data through support vector machine. IEEE T. Geosci. Remote 44: 3452-
3461. 

Wieringa, J., 1986. Roughness-dependent geographic interpolation surface wind speed 
averages. Q. J. Roy. Meteor. Soc. 112: 867-889. 


