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Application and validation of many thermal remote sensing-based energy balance models involve the use
of local meteorological inputs of incoming solar radiation, wind speed and air temperature as well as
accurate land surface temperature (LST), vegetation cover and surface flux measurements. For opera-
tional applications at large scales, such local information is not routinely available. In addition, the uncer-
tainty in LST estimates can be several degrees due to sensor calibration issues, atmospheric effects and
spatial variations in surface emissivity. Time differencing techniques using multi-temporal thermal
remote sensing observations have been developed to reduce errors associated with deriving the sur-
face-air temperature gradient, particularly in complex landscapes. The Dual-Temperature-Difference
(DTD) method addresses these issues by utilizing the Two-Source Energy Balance (TSEB) model of Nor-
man et al. (1995) [1], and is a relatively simple scheme requiring meteorological input from standard syn-
optic weather station networks or mesoscale modeling. A comparison of the TSEB and DTD schemes is
performed using LST and flux observations from eddy covariance (EC) flux towers and large weighing
lysimeters (LYs) in irrigated cotton fields collected during BEAREX08, a large-scale field experiment con-
ducted in the semi-arid climate of the Texas High Plains as described by Evett et al. (2012) [2]. Model out-
put of the energy fluxes (i.e., net radiation, soil heat flux, sensible and latent heat flux) generated with
DTD and TSEB using local and remote meteorological observations are compared with EC and LY obser-
vations. The DTD method is found to be significantly more robust in flux estimation compared to the TSEB
using the remote meteorological observations. However, discrepancies between model and measured
fluxes are also found to be significantly affected by the local inputs of LST and vegetation cover and
the representativeness of the remote sensing observations with the local flux measurement footprint.

Published by Elsevier Ltd.
1. Introduction

The energy balance at the land surface, and in particular the
partitioning of the available energy (RN – G) into sensible (H) and
latent heat flux (LE), significantly affects important hydrologic
and atmospheric processes and is a key indicator of the surface
moisture status. For irrigated agriculture, the latent heat flux (or
evapotranspiration (ET) when expressed as rate of water loss) is
Ltd.
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tas).
tied to crop water requirements, irrigation applications, and vege-
tation stress. Land surface temperature (LST) is a fundamental sur-
face state variable that is strongly coupled to the surface energy
balance and ET [3]. For this reason, studies have evaluated the util-
ity of LST as a key boundary condition and metric for modeling
water use and availability, which is tied to plant growth and car-
bon assimilation (e.g., [4]). Consequently, LST provides a means
for monitoring crop water use, stress and ultimately yield (e.g.,
[5,6]). Kalma et al. [7] review land surface schemes of varying de-
grees of complexity that involve the use of LST for estimating the
surface energy balance and the relative partitioning of the avail-
able energy (RN – G) at the land surface between H and LE.
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While LST is a useful controlling variable in energy balance
modeling, uncertainties in accounting for variations in thermal
emissivity, atmospheric corrections, radiometer viewing angle,
and sensor calibration can significantly degrade the accuracy of
LST retrievals from remotely sensed brightness temperatures [8].
Another complicating factor is the need for specifying surface layer
atmospheric properties (principally wind speed and air tempera-
ture) over the modeled landscape. Errors in LST and meteorological
boundary conditions can render many approaches that rely on sur-
face-air temperature differences to be rather tenuous when ap-
plied to heterogeneous landscape conditions [9].

Anderson et al. [10] describes remote sensing techniques that
have been developed which attempt to minimize the impacts of
many of the uncertainties in LST and meteorological forcing
variables. One approach uses maximum and minimum LST from
remotely sensed temperatures along with energy balance
constraints to define model variables. Another methodology uses
time-differencing techniques to reduce the sensitivity to the
requirement of an absolute LST-air temperature difference. A sim-
plified form of a temperature-differencing approach, called the
Dual-Temperature-Difference (DTD) scheme, was developed for
routine applications using continuous ground-based or geostation-
ary satellite observations of LST [11,12]. The land-surface scheme
in the DTD is based on the Two-Source Energy Balance (TSEB)
model framework of Norman et al. [1], which accounts for the main
physical factors causing differences between aerodynamic temper-
ature and radiometric LST [13].

For irrigated croplands in strongly advective environments,
there are likely to be significant variations in near surface/screen
level (�2 m) atmospheric properties used as upper boundary con-
ditions in model implementations. As a result, direct applications
of a land-surface model like TSEB at large scales are questionable
in the absence of a relatively dense network of weather station
observations. The DTD, however, is less sensitive to errors in air
temperature boundary conditions, and may be more accurate for
regional applications. In this study, the relative utility of the TSEB
and DTD formulations were evaluated using local LST observations
from several locations within an irrigated cotton field collected
during the 2008 Bushland Evapotranspiration and Agricultural Re-
mote sensing EXperiment (BEAREX-08) at the USDA-ARS Conserva-
tion and Production Research Laboratory at Bushland, Texas. Both
local meteorological observations collected within the field site
and remote observations obtained from the regional airport in
Amarillo, TX approximately 35 km from the BEAREX08 study site
were used in the TSEB and DTD model computations to assess sen-
sitivity to input errors. Model surface flux output, using both local
and remote inputs, is compared to eddy covariance and lysimeter
measurements collected during BEAREX08.

This study also looks in detail at the importance of using LST
and vegetation inputs that are spatially consistent with the surface
footprint sampled by the flux instrumentation used for model eval-
uation. Proper selection of model inputs in relationship to the val-
idation dataset is essential for isolating model errors from input
errors over strongly heterogeneous landscapes. An example is pro-
vided for a case where model-measurement differences are exacer-
bated due to a mismatch in remotely-sensed surface boundary
conditions and source area contributing to the flux measurement
for a strongly advective environment.
2. Model overview

2.1. Two-source energy balance (TSEB) model formulation

The TSEB scheme originally proposed by Norman et al. [1] has
gone through several revisions, improving the representation of
shortwave and longwave radiation exchange within the soil-can-
opy system as well as soil-canopy interactions [14,15–17]. In TSEB,
the satellite-derived directional radiometric surface radiometric
temperature at viewing angle /, TR(/), is considered to be a com-
posite of the soil surface and canopy temperatures, expressed as:

TRð/Þ � ½fCð/ÞT4
C þ ð1� fCð/ÞÞT4

S �
1=4 ð1Þ

where TC is canopy temperature, TS is soil surface temperature, and
fC(/) is the fractional vegetation cover observed at the radiometer
view angle /. For a canopy with a spherical leaf angle distribution
and leaf area index LAI, fC(/) can be expressed as

fCð/Þ ¼ 1� exp
�0:5XLAI

cos /

� �
ð2Þ

where the factor X indicates the degree to which vegetation is
clumped, as in row crops or sparse shrubland canopies [14,17]. Re-
cent modifications for computing X for row crops suggested by
Anderson et al. [18] and Colaizzi et al. [19] were used in this study
and yielded X values ranging from 0.5 to 0.9 as the canopy frac-
tional cover and LAI varied over the study period. The TC and TS

are used to compute the surface energy balance for the canopy
and soil components of the composite land-surface system:

RNS ¼ HS þ LES þ G ð3Þ

RNC ¼ HC þ LEC ð4Þ

where RNS is net radiation at the soil surface and RNC is net radiation
divergence in the vegetated canopy layer, HC and HS are the canopy
and soil sensible heat fluxes, respectively, LEC is the canopy transpi-
ration rate, LES is soil evaporation, and G is the soil heat flux.

By permitting the soil and vegetated canopy fluxes to interact
with each other, Norman et al. [1] derived expressions for HC and
HS as a function of temperature differences, with:

HC ¼ qCP
TC � TAC

RX
ð5Þ

and

HS ¼ qCP
TS � TAC

RS
ð6Þ

so that the total sensible heat flux, H = HC + HS, is equal to

H ¼ qCP
TAC � TA

RA
ð7Þ

where q is the density of air (kg m�3), CP is the specific heat of air
(�1000 J kg�1 K�1), TAC is an air temperature in the canopy air layer
(�C) closely related to the aerodynamic temperature, RX is the total
boundary layer resistance (s m�1) of the complete canopy of leaves,
RS is the resistance (s m�1) to sensible heat exchange from the soil
surface, and RA is aerodynamic resistance (s m�1). Resistance terms
are defined in Norman et al. [1] with recent revisions described in
Kustas and Norman [14–17]. Weighting of the heat flux contribu-
tions from the canopy and soil components is performed indirectly
by the partitioning of the net radiation between soil and canopy and
via the impact on resistance terms by the fractional amount and
type of canopy cover [see 15]. The resistances RX and RS effectively
account for the excess resistance parameterizations in one-source
energy balance (OSEB) modeling approaches where this additional
resistance is introduced typically ad-hoc in OSEB formulations to ac-
count for the less efficient transport of heat relative to momentum
transport near the surface elements [3]. With resistance formula-
tions for heat transfer from the soil and canopy elements, this re-
sults in a more realistic representation of the soil and vegetation
influence on the rate of (or resistance to) turbulent heat exchange
with the overlying atmosphere and a physically-based means of
relating soil and canopy temperatures to the radiometric surface
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temperature [1]. As a result, the TSEB model is shown to be signif-
icantly more robust than OSEB approaches over a wide range of
environmental and land cover conditions [3].

For the latent heat flux from the canopy, a modified form of the
Priestley–Taylor equation for equilibrium ET [20] is used to ini-
tially estimate LEC

LEC ¼ aPTCfG
D

Dþ c
RNC ð8Þ

Here, aPTC is a variable related to the so-called Priestley-Taylor
coefficient, but in this case defined exclusively for the canopy com-
ponent, as was suggested for row crops by Tanner and Jury [21].
The variable aPTC is normally set to an initial value of �1.3, except
under well watered partial canopy cover conditions in strongly
advective environments where a higher value (aPTC �2) may be
more appropriate [14,22], fG is the fraction of green vegetation, D
is the slope of the saturation vapor pressure versus temperature
curve (kPa C�1), and c is the psychrometric constant (�0.06 kPa
C�1). Although this study had strong advection, the vapor pressure
deficits were not extremely large and therefore aPTC was assigned a
value of 1.3 [23]. Under stress conditions, the TSEB model itera-
tively reduces aPTC from its initial value, as described below.

The latent heat flux from the soil surface is solved as a residual
to the energy balance equation

LES ¼ RNS � G� Hs ð9Þ

with G estimated as a fraction of the net radiation at the soil surface
(both in W m�2):

G ¼ cGRNS: ð10Þ

The value of cG varies with soil type and moisture conditions as
well as time of day, due to the phase shift between G and RNS over a
diurnal cycle [24]. Although for the midmorning to midday period,
when TIR satellite imagery are typically acquired, the value of cG

can be assumed constant [24,25], but in this study the adjustment
to cG suggested by Santanello and Friedl [24] was applied since the
model is run over most of the daytime period (i.e., RN > 100 -
W m�2). This formulation produced a variable cG ranging from
0.15 to 0.35 which better matched the observations.

The TSEB formulation requires a solution to both the radiative
temperature balance (Eq. (1)) and the energy balance (Eqs. (3)
and (4)), with physically plausible model solutions for soil and veg-
etation temperatures and fluxes. Unrealistic solutions, such as day-
time condensation at the soil surface (i.e., LEs < 0), can be obtained
under conditions of moisture deficiency. This happens because LEC

is overestimated in these cases by the Priestley–Taylor parameter-
ization, which assumes potential transpiration. The higher LEC

leads to a cooler TC and TS must be accordingly larger to satisfy
Eq. (1), and this larger TS drives HS too high, forcing the residual
LES from Eq. (9) to become negative. If this condition is encoun-
tered by the TSEB scheme, aPTC is iteratively reduced until LES �
0 (expected for a dry soil surface). A more thorough discussion of
conditions that force a reduction in aPTC, is given by Anderson
et al. [18] and Li et al. [26].

2.2. Dual-temperature-difference (DTD) formulation

Details of the derivation of the DTD model are described in Nor-
man et al. [11]. Briefly, the two-source-time-integrated equations
of Anderson et al. [27], currently called the Atmosphere-Land-Ex-
change-Inverse (ALEXI) model using the TSEB formulations of Nor-
man et al. [1], are used to form a double difference of radiometric
and air temperatures so that an estimate of sensible heat flux can
be obtained from measurements of surface radiometric tempera-
ture, air temperature, and wind speed, and estimates of vegetation
height, fractional cover, type and approximate leaf size. The
expression used is the following:

TR;ið/Þ�TA;i¼ fCð/Þ
HC;iRA;i

qCp
þð1�fCð/ÞÞ

ðHi�HC;iÞðRA;iþRS;iÞ
qCp

ð11Þ

where the i subscript refers to time, HC,i is the sensible heat flux
from the vegetative canopy at time i, Hi is the total sensible heat
flux above the canopy arising from both vegetation and soil compo-
nents, and the resistances at time i, namely RA,i and RS,i are defined
above in the TSEB formulation.

The sensible heat from the canopy, HC,i, is estimated from the
net radiation divergence of the vegetative canopy (RNC,i) using the
modified Priestley-Taylor expression (Eq. (8)) and solving for
energy balance of the canopy (Eq. (4))

HC;i ¼ RNC;i 1� aPTCfg
D

Dþ c

� �
ð12Þ

The net radiation divergence equation used in the DTD formula-
tion in Norman et al. [11] assumes an exponential decay of bulk RN

through the canopy layer, which is simpler than the TSEB radiation
formulations that separately consider both shortwave and long-
wave transfer through the canopy elements. The most recent equa-
tions for estimating the aerodynamic resistances above the canopy
and above the soil surface are referenced in Norman et al. [11].

The two terms on the right hand side of Eq. (11) represent the
contributions of the vegetation and soil components to the sensible
heat flux assuming the flux exchange between the atmosphere and
vegetation and soil components are in parallel, which is a simpler
version of the TSEB derived originally by Norman et al. [1]. In the
DTD method, Eq. (11) is applied at two times. The first time usually
is chosen when all the fluxes are small and the surface and air tem-
peratures are similar; this typically occurs approximately one hour
after sunrise, so i = 0 at this time. The second time can be any hour
during the day. Applying Eq. (11) at two times (0,i) and subtracting
the equations yields the following:

Hi ¼ qCP
ðTR;ið/Þ � TR;0ð/ÞÞ � ðTA;i � TA;0Þ

ð1� fCð/ÞÞðRA;i þ RS;iÞ

� �

þ HC;i 1� fCð/Þ
1� fCð/Þ

RA;i

RA;i þ RS;i

� �

þ ðH0 � HC;0Þ
RA;0 þ RS;0

RA;i þ RS;i

� �
þ HC;0

fCð/Þ
1� fCð/Þ

RA;0

RA;i þ RS;i

� �
ð13Þ

The last two terms on the right side of Eq. (13) involving H0 and
HC,0 are often negligible an hour after sunrise [see 11].

Eq. (13) represents a relatively simple result with the advantage
that any offset between measurements of TR,i(/) and TA,i are can-
celed in the temperature term. Given estimates of net radiation
(RN,i) and soil heat conduction flux (Gi) at time i, the latent heat
flux, LEi, can be calculated from the surface energy balance
equation:

LEi ¼ RN;i � Gi � Hi ð14Þ
3. Data

The local meteorological observations, surface energy flux mea-
surements, and remote sensing data used in running the TSEB and
DTD models were collected from an irrigated cotton field site lo-
cated at the USDA-ARS, Conservation and Production Research Lab-
oratory (CPRL), in Bushland, TX (35�11’N, 102�06’W). The
experimental site lies within the Texas High Plains region, at an
elevation of approximately 1170 m above mean sea level. Soils in



Fig. 1. Plots of daily irrigation/precipitation (I/P) events and volumetric soil moisture (VSM) at �5 cm, leaf area index estimated for the EC and LY sites as well as NE and SE
field averages for the 2nd IOP (Day of Year 167 to 222).

1 The mention of trade names of commercial products in this article is solely for the
purpose of providing specific information and does not imply recommendation or
endorsement by the US Department of Agriculture.
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and around Bushland are classified as slowly permeable Pullman
clay loam. The measurements were collected on experimental cot-
ton fields, approximately 5-ha squares in size. In the center of each
field was a large weighing lysimeter (nominally 3 � 3 � 2.4-m
deep). Details of the monolithic weighing lysimeters are given by
Marek et al. [28], and a discussion of the measurements and proce-
dures used to upscale the lysimeter (LY) measurements to reflect
average field conditions is given by Evett et al. [29]. Since the LY
sites only measure LE, H was computed by residual using locally
measured RN – G.

Surface energy balance/flux towers using the eddy covariance
(EC) technique for measuring the turbulent fluxes (H and LE) were
located in the four lysimeter fields and in a harvested winter
wheat/bare soil site and rangeland/grassland site, both south of
the lysimeter fields (see Fig. 2 in [2]). A detailed description of
the instrumentation and post processing of the EC/surface energy
balance measurements is described in [30]. The local meteorolog-
ical data of air temperature, wind speed, vapor and atmospheric
pressure came from the EC towers at nominally 2 m above ground
level (agl). The remote meteorological data (wind speed at 10 m
and air temperature and vapor pressure at 2 m) came from a
NOAA/NWS station located at the Amarillo airport (35.2194�N,
-101.7059�E), approximately 35 km away.

Since the objective was to evaluate the utility of the TSEB and
DTD techniques under strongly advective conditions, this study
used measurements only from the irrigated northeast (NE) and
southeast (SE) cotton fields. This allowed for comparisons of model
output with measurements from EC towers 1, 8, 2 and 9 and LY
measurements for the NE and SE fields (see Fig. 1 in [30]). The
EC1 and EC2 towers were located in the northeastern corners of
the NE and SE fields, respectively, to maximize fetch for winds,
which typically come from the south/southwest. The EC8 and
EC9 towers were located in close proximity (�20 m northeast) of
the NE and SE LY, respectively, and model tests at these sites used
RN, G and LST measurements collected at the LY sites.

LST was measured by two infrared thermometers (IRTs)
(Exergen,1 2:1 field of view) over each lysimeter at nominally 2 m
agl, aimed 45 degrees from nadir with approximate southwest
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viewing azimuth angles of 45 and 60 degrees from due south. At the
EC tower sites, LST was measured using two Apogee (models IRR-PN
and IRTS-P, 3:1 field of view) IRTs at nominally 1.25 m agl, one view-
ing nadir, the other aimed 45 degrees with due south azimuth angle.
For comparison with the IRT data, estimates of LST were also
available from longwave pyrgeometers mounted at each site (Kipp
& Zonen CGR3 models at the lysimeter sites, and CNR1 net
radiometers at the EC sites, Bohemia, New York), which yields a
‘‘hemispherical’ surface temperature estimate through inversion of
the Stefan-Boltzmann equation [8].

Canopy height and row width measurements and destructive
samples of leaf area were collected periodically at key growth
stages at sites in the vicinity of the lysimeters. Leaf area at selected
sites within each field was also measured with a LI-COR leaf area
meter (model LI-3100, Lincoln, Nebraska). A linear interpolation
as a function of time based on growing degree days was used by
Colaizzi et al. [31] for estimating LAI, plant height and width be-
tween vegetation sampling dates. The LAI estimates for the lysime-
ters and areas surrounding the EC towers were estimated using a
sigmoidal relationship between the ground-based LAI samples
and remotely sensed vegetation index imagery from aircraft [30].
An interpolation algorithm providing daily LAI estimates was
based on an exponential relationship with day of year [30].

The data used for evaluating DTD and TSEB models covered the
2nd intensive observation period (IOP) from approximately day of
year (DOY) 167 (June 15) to 222 (August 9). Over this time period,
particularly from DOY 190 to 210, there was a dramatic change in
vegetation density (leaf area). Frequent irrigations maintained ade-
quate soil moisture to sustain crop development under high evapo-
rative demand conditions. In Fig. 1, are plots showing dates and
quantity of precipitation and irrigations, as well as estimates of
Fig. 2. Comparison of land surface temperature (LST) derived from the long wave pyrgeom
and SE fields. Line represents perfect agreement (1:1).
LAI and a representative daytime water content (volumetric soil
moisture, VSM) at �5 cm from a network of Hydra Probe (Hydra
Probe II, Stevens Water Monitoring Systems, Inc., Portland, Oregon)
measurements described by Cosh et al. [33]. Note the variability in
LAI between locations, particularly in the NE field. The impact of this
variation in LAI on model-measurement comparisons is discussed
below. A detailed analysis of the impact of variability in vegetation
cover on measured fluxes is presented by Alfieri et al. [30].

4. Results and Discussion

4.1. IRT vs. Pyrgeometer estimates of LST

To assess the relative utility of IRT and pyrgeometer measure-
ments of LST in driving the TSEB and DTD models, temperatures
derived from each instrumentation type are compared with mea-
surements at adjacent sites within the same field in Fig. 2. The pyr-
geometer observations exhibited less variability between adjacent
sites than did the IRT observations, suggesting greater uncertainty
in the IRT data due to sampling and instrument stability/accuracy
issues. In comparison, the pyrgeometer data appear to yield a more
reliable area-averaged/aggregated LST, given that the cotton row
crop was clumped and variable in fractional ground cover. There-
fore, the pyrgeometer-derived LST data have been used in all the
model computations and comparisons with measured fluxes as de-
scribed below, assuming a nominal view angle of 45 degrees.

4.2. Energy balance closure for EC flux measurements

Alfieri et al. [30] noted that the EC flux measurements of H
and LE had incomplete energy balance closure with respect to
eters and the average of the infrared thermometers at the EC and LY sites in the NE



W.P. Kustas et al. / Advances in Water Resources 50 (2012) 120–133 125
the available energy, RN – G, with (H+LE)/(RN-G) ranging from 74%
for EC2 to 87% for EC8, 84% for EC1, and 85% for EC9. Since energy
balance models conserve energy by definition, typically energy bal-
ance closure is forced among EC flux observations used for model
validation. Alfieri et al. [30] forced closure by conserving the Bo-
wen ratio (H/LE) and by residual (LE = RN–G–H). Under conditions
of large LE (small or negative Bowen ratios due strong advection),
there are studies suggesting that computing LE as a residual may
be a better method for energy balance closure [32]; hence, the
residual closure technique was applied in this study. This assumes,
of course, that both RN and G measurements are reliable and are
representative of the source area/flux footprint affecting the EC
measurements.

4.3. TSEB and DTD model performance using local meteorological
inputs

Model performance was assessed using the mean-absolute-dif-
ference (MAD) between measured and modeled fluxes, a statistic
recommended by Willmott and Matsurura [34]. In addition the
mean-bias-difference (MBD; average of modeled output –mea-
sured flux) and mean-absolute-percent-difference (MAPD = MAD/
average measured flux ⁄100) statistics were also computed. The
models were applied to 15-min averaged inputs of solar radiation,
air temperature, wind speed, vapor pressure and LST, and the
resulting 15-min fluxes were averaged to hourly values for com-
parison with the hourly averaged EC and LY measurements.

Model results using local meteorological inputs from the NE
field are shown in Fig. 3, which illustrates the scatter between
hourly flux measurements from the two sites where LST was mea-
sured, namely from the EC1 flux tower and NE LY, and the fluxes
computed from the DTD and TSEB models. The agreement between
measured and modeled fluxes using both modeling approaches is
quite similar, although it appears that the TSEB model has a
Fig. 3a. X–Y scatter plots comparing energy balance components (RN, G, H and LE) derived
EC1 system deployed in the NE field where LST was measured. The 1:1 line represents
slightly greater bias in G and H at both sites. The scatter is greater
in H and LE for the NE LY site, but with a relatively small MBD in LE.
The comparison between modeled versus measured fluxes for the
SE field sites with LST observations, EC2 and SE LY (Fig. 4), indicates
less overall bias in H and LE compared with the NE field and better
agreement (i.e., smaller MBD values). The statistical results listed
in Table 1 confirm what is illustrated in Figs. 3 and 4. For RN, the
MAD values among the flux sites are similar for the two models
(average MAD, <MAD> � 25 W m�2) while MBD values are more
variable. For G, MAD values from the TSEB model are greater than
DTD, namely <MAD> � 45 versus 30 W m�2, respectively, in large
part due to a greater <MBD> of nearly 25 compared with -
10 W m�2 for TSEB and DTD, respectively. This result is due in part
to differences in radiation partitioning algorithm for soil and can-
opy described in the model overview section. For H and LE the
MAD and MBD values for the two models are similar, but with
MAD in LE lower for the DTD model by �5 W m�2 on average. This
is mainly a result of the fact that by using a time-differencing tech-
nique, effects of biases in LST from errors in assumed emissivity or
instrument calibration are minimized. For the TSEB and DTD
models <MAD> �50 W m�2 for H and 65 and 60 W m�2 for LE,
respectively. Values of <MBD> for TSEB and DTD are relatively
small at �-25 W m�2 and -15 W m�2 for H and �1 and 10 W m�2

for LE, respectively.

4.4. TSEB and DTD model performance using remote meteorological
inputs

Table 1 also lists the MAD and MBD values obtained in applying
the TSEB and DTD models to the remote meteorological (met) data
(i.e., from the Amarillo airport). Note that the effect of using the re-
mote met data had a minor impact on RN and G estimates. In al-
most all cases, the performance of the DTD was similar using
local and remote inputs. In contrast, for many sites there was an
from the DTD and TSEB models using local met data versus measurements from the
perfect agreement.



Fig. 4a. X–Y scatter plots comparing energy balance components (RN, G, H and LE) derived from the DTD and TSEB models using local met data versus measurements from the
EC2 system deployed in the SE field where LST was measured. The 1:1 line represents perfect agreement.

Fig. 3b. X–Y scatter plots comparing energy balance components (RN, G, H and LE) derived from the DTD and TSEB models using local met data versus measurements from the
NE LY system where LST was measured. The 1:1 line represents perfect agreement.
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increase in model-measurement differences using the TSEB with
the remote met inputs. In Table 2, the percentage increase in
MAD in model fluxes using the remote met inputs are listed, aver-
aged over the four flux sites. For the TSEB model, there is a signif-
icant increase in MAD for H (53%) and LE (22%) when using remote
inputs, while for the DTD model fluxes, there is a modest increase



Fig. 4b. X–Y scatter plots comparing energy balance components (RN, G, H and LE) derived from the DTD and TSEB models using local met data versus measurements from the
SE LY system where LST was measured. The 1:1 line represents perfect agreement.
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in MAD for H (24%) and only 9% for LE. The effects of using the re-
mote met data with DTD and TSEB model output on H and LE in
comparison to the flux measurements are also illustrated in Figs. 5
and 6 for the four sites. These figures illustrate an increase in both
the scatter and bias using the TSEB with the remote versus local
met data, while the DTD model produces slightly greater scatter
without a significant change in MBD values (see Table 1). As found
in other studies (e.g., [11]), the DTD approach reduces errors in
using non-local met inputs (primarily air temperature) and biases
in LST observations due to sensor calibration and other effects.

In terms of estimating hourly LE/ET, both the TSEB and DTD
models yield MAPD values on the order of 15% when using local
met data. Using remote met data, the MAPD increases for the TSEB
model to �20% on average while it remains �15% for the DTD.
When summing the modeled and measured LE over the daytime
period, the MAPD values are consistently smaller in magnitude.
Application of TSEB and DTD with local met data yielded MAPD
values of less than 5% for NE LY and SE LY sites while MAPD from
the EC sites tended to be slightly greater on the order of 5 to 10%.
Averaging all EC and LY sites yielded a MAPD value on the order of
�6%. Using remote met data, the MAPD increases using the TSEB
model to �10%, on average, while remaining �5% when applying
the DTD approach. In terms of daytime total ET in mm of water,
MAD values using local met data with TSEB and DTD models were
� 0.5 mm, on average, while the use of remote met data mainly af-
fected the performance of the TSEB model, with the MAD values
reaching �0.8 mm, but only a slight increase in the average MAD
for all the sites of �0.6 mm.

4.5. TSEB and DTD model performance using non-local LST and LAI
inputs

Although both EC8 and EC9 were in close proximity to NE LY
and SE LY (within �25 m), the vegetation conditions within their
source area footprints were measurably different from those inside
the�9 m2 surface area of the lysimeters (cf. Fig. 1). Alfieri et al. [30]
quantified these differences using a combination of ground obser-
vations and high resolution aircraft imagery and determined the
LAI at NE LY for the period of accelerated growth DOY 190-210
was from 20 to 75% higher than within the time-averaged EC8 flux
footprint, while at SE LY, LAI was 5 to 25% higher than in the EC9
footprint. However, LST, RN and G time series were only acquired
at the lysimeter sites.

Fig. 7 demonstrates errors resulting in modeling fluxes from
EC8 and EC9 using LAI, LST, RN and G from the nearby lysimeter
sites. Resulting biases are generally larger than for the EC1, EC2,
SE LY and NE LY simulations (see Table 3). This bias is greatest
for the extreme (high and low) values of H and LE values and is
more apparent for EC8 than EC9. This is not surprising since the
differences in vegetation cover (LAI) is much greater between
EC8 and NE LY than between EC9 and SE LY (see Fig. 1).

To provide a perspective as to the significance of the differences
between modeled and measured fluxes in relation to the uncer-
tainty in the in-situ flux measurements, a brief summary of the
intercomparison of fluxes from the EC and LY systems for NE and
SE fields by Alfieri et al. [30] is provided. In that study, Alfieri
et al. noted that LE from LY during the daytime consistently ex-
ceeded EC from 50 to nearly 150 W m�2, while H from LY solved
by residual typically yielded values greater than EC in magnitude.
This was most notable under strongly advective conditions in the
afternoon where H < 0, and as a result H (EC) – H (LY) ranged from
50 to 100 W m�2 on average. In addition, differences in estimates
of G from EC and LY sites ranged between 50 and 100 W m�2 on
average during the mid morning period when G is maximum.
These results indicate that differences between modeled and mea-
sured surface fluxes are due in part to biases in flux observations
among the measurement systems, that relate to differences in veg-
etation cover conditions (LAI) affecting the different measurement
systems, as illustrated in Fig. 1. This also helps to explain why a
greater bias was observed between modeled and measured H
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Table 2
Percentage increase in MAD using remote versus local met data.

Flux Change in MAD for the DTD
model (%)

Change in MAD for the TSEB
model (%)

RN 23 12
G 3 5
H 24 53
LE 9 22
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and LE especially for EC8 since LST observations came from the NE
LY which had significantly greater plant cover (LAI; see Fig. 1).
4.6. Sensitivity of TSEB and DTD model performance to key input data

There have been several sensitivity studies investigating a fairly
extensive set of input variables affecting the TSEB approach
[27,36–38]. All of these sensitivity studies find that the TSEB model
performance is mainly affected by the uncertainty in surface-air
temperature differences, either due to errors in determining the
surface radiometric temperature, use of non-local air temperature
observation or a combination of both. This was the main reason for
developing the DTD scheme. Although, significant errors in
fractional vegetation cover/LAI and wind speed can also cause
considerable variation TSEB model output, it is the errors in the
surface-air temperature difference that often leads to the greatest
impact on TSEB model performance. This has led to recent at-
tempts to develop a practical method for estimating the main spa-
tial patterns in the wind speed and air temperature using results
from large eddy simulations coupled to remotely sensed LST, LAI
and land cover/land use [39].

To conduct another even more extensive sensitivity analysis is
beyond the scope of the current paper. Instead, a ‘‘worst case sce-
nario’’ was constructed for such a strongly advective environment
to evaluate the impact on both TSEB and DTD model output. A day
towards the end of the IOP (DOY 215) was selected having signif-
icant canopy cover, high radiation, moderate winds and strong
advection (sensible heat flux directed towards the surface) in the
early afternoon. The imposed errors in the key inputs were a
+1 K and a +3 K increase in TA,0 and TA,i, respectively, an underesti-
mate of TR,i(/) of -2 K for the afternoon observation based on a re-
cent study by Tang et al. [40] and an increase by a factor of 1.5 in
wind speed, u, namely 1.5 � u0 and ui. This scenario is based on the
fact that the non-local meteorological observations are most likely
to come from a nearby airport (such as the remote met data used in
the current study) which tends to have the weather station located
in an open non-irrigated area near an airport tarmac, hence a
smooth dry surface. It is also one of the weather station location
types shown to have significant effects on the TSEB model output
applied to an image/modeling domain [39]. The flux observations
from EC1 and the reference and re-computed fluxes with the errors
in TR(/), TA, and u described above are listed in Table 4. The com-
puted flux output for the worst case scenario indicates that both
DTD and TSEB models are nearly equally affected by these errors.
This is because in the case of both TA and TR,(/) the bias was not
constant between the initial and second observation, which makes
the DTD less effective in compensating for such errors. The largest
relative error is in H, yielding �200% and 400% deviations from the
reference case using the TSEB and DTD model, respectively, while
for LE, the relative error in TSEB and DTD model output is approx-
imately 30% and 25%, respectively. It is interesting to note that LE
from the lysimeter (NE LY) for this period was 844 W m2, indicat-
ing that discrepancies in the measurements (�31%) can at times be
comparable to significant model errors.



Fig. 5b. X–Y scatter plots comparing H and LE derived from the DTD and TSEB models using local versus remote met data in comparison with fluxes from the NE LY. The 1:1
line represents perfect agreement.

Fig. 5a. X–Y scatter plots comparing H and LE derived from the DTD and TSEB models using local versus remote met data in comparison with fluxes from the EC1 system in
the NE field. The 1:1 line represents perfect agreement.
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5. Concluding remarks

The comparison of TSEB and DTD model output of surface en-
ergy fluxes with measurements from BEAREX08 suggests that
model performance is significantly affected by the representative-
ness of the measurements and associated key model input
variables, namely LST, LAI and meteorological inputs (primarily
air temperature, TA). In such irrigated and strongly advective



Fig. 6a. X–Y scatter plots comparing H and LE derived from the DTD and TSEB models using local versus remote met data in comparison with fluxes from the EC2 system in
the SE field. The 1:1 line represents perfect agreement.

Fig. 6b. X–Y scatter plots comparing H and LE derived from the DTD and TSEB models using local versus remote met data in comparison with fluxes from the SE LY. The 1:1
line represents perfect agreement.
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environments, variability in these inputs are likely to be more
extreme and have a greater impact on modeled and measured
fluxes since often LE significantly exceeds the available energy.
Consequently, LAI, LST and TA measurements need to reflect condi-
tions within and above the source area of the measurement system
and are critical factors for model evaluation/testing.



Table 3
Difference statistics (see equations in Table 1) comparing H and LE estimated from the DTD and TSEB model output (Oi) versus flux measurements (Mi) from the EC8 and EC9
systems.

Model Flux (local/remote met input) EC8 MAD (W m�2) EC8 MBD (W m �2) EC9 MAD (W m �2) EC9 MBD (W m �2)

TSEB H (local) 67 �53 33 �10
TSEB LE (local) 65 19 52 �16

DTD H (local) 51 �40 28 �13
DTD LE (local) 69 36 41 10

Table 4
Sensitivity to significant errors (‘‘worst case scenario’’) in TSEB and DTD model inputs of surface temperature, air temperature and wind speed. The errors are as follows: The
imposed errors in the key inputs were a +1 K and a +3 K increase in TA,0 and TA,i, respectively, an underestimate of TR,i(h) of �2 K for the afternoon LST observation and an increase
by a factor of 1.5 in wind speed, u,, namely 1.5 u0 and 1.5 ui.

Case RN EC1
(W m �2)

G EC1
(W m �2)

H EC1
(W m �2)

LE EC1
(W m �2)

RN TSEB
(W m �2)

G TSEB
(W m �2)

H TSEB
(W m �2)

LE TSEB
(W m �2)

RN DTD
(W m �2)

G DTD
(W m �2)

H DTD
(W m �2)

LE DTD
(W m �2)

Reference 720 78 �55 640 724 88 �91 726 709 40 �40 709
Worst

Case
720 78 �55 640 748 105 �288 931 736 41 �200 894

Fig. 7. X–Y scatter plots comparing H and LE derived from the DTD and TSEB models using local met data in comparison with fluxes from the EC8 from the NE field and EC9
from the SE field. Note that LST is measured at NE LY and SE LY. The 1:1 line represents perfect agreement.
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For BEAREX08, spatial variability in vegetation cover and result-
ing impact on LST over relatively short distances in irrigated cotton
fields had a significant effect on model-measurement performance,
especially with the TSEB model. This was exacerbated when using
remote meteorological data. For the DTD model, a similar result
was found using remote LAI and LST, although use of remote met
data had a minor effect on performance in estimating the fluxes.
In addition, the DTD model estimates compared to the TSEB
showed less bias in H and LE estimates at the extremes when re-
mote LAI and LST were used. The model inputs of LST and LAI that
reflect the nominal 9 m2 surface area of the NE and SE lysimeters
yielded good agreement with hourly LE measurements resulting
in MAPD values between 15% and 20% using local and remote
met data (see Table 2).
When the hourly LE estimates are summed over the daytime
period, the MAPD values using NE LY and SE LY are less than 5%.
This indicates that the DTD and TSEB modeling schemes can yield
reliable LE fluxes in this environment as long as the key boundary
conditions, LAI and LST, reflect the plant cover/moisture conditions
of the source area contributing to the flux. Furthermore, given that
the performance of the DTD modeling approach was not signifi-
cantly affected by the use of remote met data in this advective
environment, this might be a simple yet viable technique for ro-
bust ET estimates at remote locations where local met observa-
tions are unavailable. On the other hand, when the bias in
surface and/or air temperature values differ significantly between
the two times, the DTD model is shown to have minimal advantage
over the TSEB approach.



132 W.P. Kustas et al. / Advances in Water Resources 50 (2012) 120–133
Future work will use as input to the TSEB modeling scheme the
high resolution LAI and LST derived from the aircraft imagery and
averaged over the source-area/flux footprint estimated for the EC
tower measurements to determine if this results in an improve-
ment in the model-measurement comparison at the EC tower sites.
This will also involve developing a more complex set of corrections
to the EC flux measurements based on the results from Alfieri et al.
(this issue) for attaining energy balance closure and adjusting for
advection of turbulent fluxes. Plans are also to use other sources
of remote met inputs to test the sensitivity of the DTD and TSEB
model output and to apply these approaches with satellite obser-
vations over this region to compare with other more complex
LST-based approaches providing regional ET [35]. Finally, based
on the preliminary findings of Colaizzi et al. [31] indicating that
the partitioning between soil and canopy LE by the TSEB scheme
may be unreliable for irrigated row crops in such an advective
environment, a more thorough study of the flux partitioning will
be performed for both the DTD and TSEB schemes.
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