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Model performance assessment in agronomy 
and agroecology has employed many procedures in the 

past and continues to do so in the present. As recently reiter-
ated by Tedeschi (2006), modelers in many fi elds, as well as 
statisticians, recommend the employment of multiple perfor-
mance criteria tailored to each application rather than relying 
on a single performance measure. Relevantly, from this tailored 
application approach, Tedeschi (2006) provides formulae, 
discussion, and comparison of several available procedures.

With models becoming modular and increasingly complex, 
Fila et al. (2003) developed the public domain soft ware library 
called IRENE_DLL (Integrated Resources for Evaluating 
Numerical Estimates- Dynamic Link Library). Th is library has 
most of the commonly used univariate and bivariate analyses 
including procedures called diff erence based methods and asso-
ciation based methods. Univariate analyses allow the modeler 
to consider and compare empirical and ideal distributional 
features of the observations and predictions. Diff erence based 
measures include methods such as the root mean square error, 
the mean absolute deviation or error, and the mean bias error 
(MBE) with a t test (see e.g., Fox, 1981). Th e MBE is oft en just 

called the bias. Association based methods include Pearson 
(r) or Spearman (rs) correlation coeffi  cients and simple linear 
least-squares regression analysis. In addition, there are empiri-
cal indices of agreement or effi  ciency like d (Willmott, 1981) 
and e (Nash-Suitcliff e effi  ciency statistic; Nash and Sutcliff e, 
1970). Legates and McCabe (1999) proposed robust versions of 
d and e based on absolute value distances rather than squared 
distances measures. Other tools or updated versions of some 
of the IRENE tools are available and used in other disciplines, 
particularly medical research.

Using either a t test alone or a correlation coeffi  cient alone 
can result in a misleading or inadequate assessment (Lin, 
1989). In addition, many measures or indices, like d and e, are 
arbitrary, being ad hoc and not associated with signifi cance 
tests and probability distributions. Willmott (1981, 1982, 
1984), Willmott et al. (1985), and others argue against using 
signifi cance tests. While many statisticians would agree with 
Willmott that assessment of model performance should make 
sense in terms of the underlying knowledge of the subject being 
modeled, they would still use the probability measures (Lin 
et al., 2002). Some statisticians, however, would recommend 
that no absolute signifi cance level or confi dence interval be 
preset, instead let the user decide whether or not to accept the 
results at the reported p levels. Moreover, in this spirit, know 
that an insightful omnibus procedure combining the essential 
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assessments of the diff erence and correlation analyses exists, is 
well-known, and is well-used in other scientifi c literature with 
706 citations in the Web of Science as of February, 2009. Th is 
procedure is concordance correlation analysis. Lin (1989) fi rst 
introduced the rc as a bivariate analysis to assess agreement 
between paired measurements. Th e analysis, however, can be 
used for other similar assessments including comparing model-
ing predictions with independent observations (Lin et al., 
2002). In addition Liao (2003) off ers an improved concordance 
correlation procedure. To date, we found only two agronomic 
data comparison studies that use Lin’s method, and neither is a 
modeling application (Joyce et al., 2001; McGinn et al., 2006). 
To promote the use of these procedures in agronomic model-
ing, this work presents a brief review of several procedures for 
comparing model performance. As an illustration, we assessed 
the performance of two reference evapotranspiration models 
using evapotranspiration data obtained from a lysimeter.

MATERIALS AND METHODS
Data Set and Models

Daily totals for hourly weighing lysimeter observations 
are taken from the 1985–1986 Phene et al. (1986) calibra-
tion study run at Five Points, CA. Corresponding daily totals 
of hourly modeled evapotranspiration were estimated with 
concurrently recorded hourly weather data collected from an 
adjacent meteorological station. Each series of the ET0 and the 
resulting diff erence series have notable autocorrelations and so 
lack the desired degree of independence. Th e ET0 (mm) from 
every other date for a total of 50 d are taken from one data set 
in the study. Th is selection reduces fi rst-order serial correla-
tion eff ects on the statistical analysis. Th e weighing lysimeter 
and ET0 measurements are described in Howell et al. (1985). 
Th e weather station is described in Howell et al. (1984); the 
weather data set used in this study consists of direct hourly 
measurements of solar radiation, net radiation, air temperature, 
relative humidity, wind speed at 2 m elevation, wind direction, 
precipitation, and soil temperature at two depths. In Phene et 
al. (1986), the weather data were used to estimate evapotrans-
piration with several energy balance (EB) models (see e.g., 
Brutsaert, 1982) and then the modeling results were compared 
with the corresponding lysimeter measurements. Th e EB 
models are the sum of a radiation term and an advection term. 
Th e radiation term is mainly a function of the net radiation 
and humidity (cast as vapor pressure); the advection term is 
mainly a function and the wind speed and vapor pressure. For 
the purpose of this example, the daily lysimeter and weather 
observations are assumed to be valid having no bias or any 
other matters of concern.

Th e fi rst model considered, Model-1, is the hourly modifi ed 
Penman Equation with the empirical wind function of Pruitt 
and Doorenbos (1977) in the advection term as is reported in 
Phene et al. (1986). Th e Pruitt and Doorenbos (1977) hourly 
evapotranspiration model is the standard reference model for 
the California Irrigation Management Information System, 
CIMIS for brevity (Snyder et al., 1985, p. 52). Th e second 
model considered, Model-2, uses the same radiation term but 
the advection term is an iterative estimate from a physically 
based atmospheric stability routine (Eq. [10.20] on p. 218, 
Brutsaert, 1982). Here aft er it is called STAB for brevity.

Model Performance Measures
Th is example makes use of a multiple performance measures 

approach. Here the dependent variable, y, is the lysimeter 
observations, and the independent variable, x, is the model 
estimates from the weather data. All calculations, statistics, 
and graphs were performed in SAS v. 9.1 (SAS Inst. Inc., Cary, 
NC). In this illustration, the performance tests used are MBE, 
Pearson correlation coeffi  cient (r), MD plot (Cleveland, 1993), 
mean squared deviation (MSD), both Lin’s (1989) and Liao’s 
(2003) rc’s, e, and D (Section 6.3 in Conover, 1999). Th e MBE 
and r are commonly used and so do not need to be described 
here. Th e rest are described in the following paragraphs.

Mean-Difference Plot

Th is plot has been in use at least since Bland and Alt-
man (1986). Most likely, Cleveland (1993) gave it the name 
MD-Plot. Th e paired diff erences, yi – xi, are plotted using 
the vertical axis scale while the paired means, 0.5(yi + xi), are 
plotted using the horizontal axis scale; here i is the observation 
index with 1 ≤ i ≤ n where n is the number of paired observa-
tions. Th e MBE is the mean of yi – xi over all observations and 
its standard deviation, standard error, and 95% confi dence 
interval are estimated from the univariate defi nitions of these 
statistics applied to the yi and xi diff erence. While conceptu-
ally, –∞ ≤ MBE ≤ ∞, ideally the MBE ≈ 0. Th e MD plot 
is, thus, a way to graphically examine the MBE and its vari-
ability. For sound inference, there are several assumptions 
to assess, particularly the following two: (i) that the paired 
diff erences are normally distributed about the MBE and (ii) 
that the paired diff erences are not related to the paired means 
(Bland and Altman, 1986). Generally the zero diff erence line 
is included for reference. In this note, as in Fig. 1, an MD plot 
includes the zero diff erence line and the MBE with its 95% 
confi dence interval (Meek, 2007). Also in this MD plot, the 
axes are drawn in a way to visually display the distributions 
for each variable. Each axis line is drawn as a box-plot to show 
the extremes, interquartile range, and median. In addition, a 
histogram is shown to the right of the paired diff erence axis 
(vertical) and on top of the paired mean axis (horizontal). 
Within the area for each histogram the location of the mean 
is depicted. Th is plot, thus, helps with the assessment of the 
underlying assumptions. For example, is the MBE ≈ 0? Is the 
distribution unimodal? Symmetric? Ideally, a formal univari-
ate analysis that minimally includes the mean, the standard 
deviation, the skewness, the kurtosis, common quantiles, and a 
normal distribution test is performed on each variable as well.

Notice, as Lin (1989) points out, the use of MD plot and 
related analysis alone is not suffi  cient and can be misleading; 
hence we suggest using additional analyses and graphs. Th e 
suggested additional analyses are two concordance correlation 
analyses, an associated bivariate (BV) plot (Cleveland, 1993) as 
modifi ed by Meek (2007), and a formal comparison of the two 
distributions, the D test. Bivariate plots are not discussed here 
because they are also commonly used.

Mean Squared Deviation

Th e MSD can be considered and evaluated as the sum of 
variance components as follows:
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MSD = (μy – μx)2 + 2
ys  + 2

xs – 2syx

where μy is the mean of the observation variable, μx is the mean 
of the prediction variable with μy – μx another expression for 
the MBE, sy is mean deviation y from μy, sx is mean deviation x 
from μx, and syx is mean cross deviation for y and x (Lin et al., 
2002). Notice here that mean deviations and not the stan-
dard deviations are used, so the terms are all divided by n, the 
number of observations, rather than n – 1. When the divisor is 
n, the square root of the MSD can be called root mean square 
deviation. Sometimes MSD may be estimated with n – 1 and 
referred to as the lesser bias form (Lin et al., 2002). Conceptu-
ally, the MSD is the sum of squared MBE and its variance. Also 
notice that 0 ≤ MSD ≤ ∞. Further discussion on the MSD as 
well as its relationship to some other common diff erence mea-
sures can be found in Kobayashi and Salam (2000).

Concordance Correlation Coeffi cient
Th e MSD components can be included in the related con-

cept of an rc. To assess the relationship y = 1x by minimizing 
the squared perpendicular deviation of the paired observations 
from a 1:1 line (a 45° line, if both the y and x axes scales are 
identical) under bivariate normal assumption for y and x, Lin 
(1989) developed an insightful test statistic called the rc. Th e 
rc statistic is an adjusted version of the well-known Pearson 
product-moment correlation coeffi  cient, r, and so can be for-
mally evaluated in the same way. Th e rc is calculated as

rc = rCb

with Cb (Lin’s bias correction factor) = [(v + 1/v + u2)/2]–1. Here 
v = sy/sx and is called a scale shift  while u = (μy – μx)/(sxsy)

0.5 
and is called a location shift  relative to scale. Notice u is a scaled 
version of the MBE and v is the equivalent of the ratio of 
standard deviations because the devisors in sy and sx cancel out. 
A pure location shift  could have the data scatter parallel to the 
1:1 line through the origin. If u > 0, then the scatter is above 
the 1:1 line. In a pure scale shift , the data scatter would cross 
the 1:1 line. In general, both shift s are present to some degree. 
Conceptually, although with some dissent (see Tedeschi, 
2006), rc can be considered the product of precision, r, and 
accuracy, Cb. Inaccuracy is, thus, due to either one or both 
u deviating from 0 and v deviating from 1. The bivariate 
normal and perpendicular error assumptions may be poor in 
some comparisons. Moreover, ideally, an accuracy measure 
should include r and the sign of r. Liao (2003) offers an 
improved rc that does so by considering the areas of sequen-
tial quadrilaterals formed by the 1:1 line and each set of two 
observations forming adjacent sides of each quadrilateral. 
The improved accuracy replaces Cb with Ap (Laio’s bias cor-
rection factor) where, in terms of direct MSD components, 
Ap is calculated as

 

Alternatively, in terms of location and scale shift s, Ap is

 

Here, τ = sy/sx or the same as v in the Cb defi nition, but Liao’s 
location shift  relative to scale, δ = (μy – μx)/sx, is a slightly dif-
ferent form and scaling of the MBE than u is. While conceptu-
ally –1 ≤ r ≤ 1, for modeling purposes, reasonable models will 
generally have both r and rc in the interval (0,1) and, ideally, 
not be diff erent from 1. Interestingly, there are additional 
analyses related to MSD and rc that could provide additional 
insight into model performance, like the total deviation index 
(Lin et al., 2002).

Nash-Sutcliffe Effi ciency
Th is empirical index is used to indicate agreement between 

observations (y) and predictions (x). It is included here because 
it has been widely employed in hydrology and some other 
related sciences since 1970 (Nash and Sutcliff e, 1970). Th e 
defi nition of e (Nash-Sutcliff e Effi  ciency) follows:

While the range of e is –∞ ≤ e ≤ 1, reasonable models will have 
e > 0; ideally, e ≈ 1.

Kolmorgov-Smirnov Statistic
In the BV plot that shows the distributions of y and x, a 

graphical comparison of them is possible. Let the distribu-
tions be identical. If the graph is plotted with the units in 
equal length scales on both axes so the 1:1 line is 45° then the 
quantiles and histograms would superimpose on each other 
exactly if the plot were folded along the 1:1 line. For a reason-
able model, hence, assessment of a lack-of-diff erence between 
the y and x distributions is primary; there are many ad hoc and 
formal tests available. Some ad hoc indications of a diff erence 
between the x and y distributions include u ≠ 0, δ ≠ 0, and v ≠ 1. 
Alternatively, there are formal tests available for this purpose. 
A signifi cant bias (MBE ≠ 0) is one possibility which reveals 
a specifi c dissimilarity. Th e Kolmorgov-Smirnov two-sample 
test, D, is another more general test. It is a well-known non-
parametric statistic that has been used in both deterministic 
and stochastic modeling (Tedeschi, 2006). Assume the y and x 
data are ordered and let Sy and Sx be their respective empirical 
distribution functions (EDF). Th e D statistic is then defi ned as 
follows:

D = sup
j   

|Sy( j) – Sx( j)| .

Here, sup is mathematical notation for the supremum, and 
j spans the range of evapotranspiration values. Simply put, 
the expression means that D is the greatest absolute distance 
between the two EDF’s; hence, its range is 0 ≤ D ≤ 1. Th e 
advantage, when using D for a two-sided test, is that it is 
consistent in revealing all types of diff erences that may exist 
between individual y and x distributions. While D can be 
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determined either analytically or graphically, its p value must 
be calculated with simple or asymptotic formulae, as is done in 
the SAS procedure, or checked against tables such as Table A19 
in Conover (1999).

RESULTS
Model performance results are summarized in Table 1. Th e 

standard errors and Type 1 probabilities for the MBE = 0 are 
reported in Table 1 to show their connection with the graphical 
analyses depicted in the MD plots (Fig. 1 and 2). Analogously, 

the Type 1 probabilities for D along with the concordance anal-
yses results are reported in Table 1 to formally compare them 
with the distributions depicted in the BV plots (Fig. 3 and 4). 
Notice that both models are biased low with respect to the 
measures (u, δ, MBE > 0). Figure 1, the MD plot for Model-1 
(CIMIS), shows a reasonably small and acceptable model bias, 
MBE = 0.055 (p ≤ 0.86). Th e related BV plot (Fig. 3) shows 
reasonable concordance with small location shift  (u ≤ |0.1|, 
notice the means μy = 6.48 and μx = 6.42 are similar) and small 
scale shift  (v – 1 ≤ |0.1|), indicating an accuracy that is likely 

Table 1. Evapotranspiration model performance statistics.†

Model‡

Concordance Correlation Coeffi cient Analysis

Effi ciency Difference Measures Klm.-Smr.Lin’s Method Liao’s Method
r§ Cb rc u v Ap rc δ e MBE MSD D¶

Precision Accuracy Location Scale Accuracy Location mm mm2

CIMIS 0.980 0.995 0.975 0.025 1.10 0.991 0.970 0.004 0.954 0.055 ± 0.069 0.243 0.120

(p ≤ 0.428)# (p ≤ 0.864)

STAB 0.982 0.963 0.946 0.215 1.19 0.949 0.932 0.033 0.908 0.452 ± 0.077 0.502 0.280

(p ≤ 0.001) (p ≤ 0.040)

   Change –0.002 0.032 0.029 –0.190 0.09 0.042 0.038 -0.029 0.046 –0.397 –0.259

† r, Pearson product-moment correlation coeffi cient; rc, concordance correlation coeffi cient; Cb, Lin’s accuracy; u, Lin’s location shift relative to the scale shift; v, Lin’s 
scale shift; Ap, Liao’s accuracy; δ, Liao’s location shift relative to scale; e, Nash-Sutcliffe effi ciency; MBE, mean bias error ± standard error of the MBE; MSD, mean square 
deviation; D, Kolmogorov-Smirnov two-sample test.

‡ There are 50 observations in the data set. The CIMIS model (Model-1) has the wind function based on Pruitt and Doorenbos (1977). The STAB model (Model-2) has the 
wind function based on Brutsaert (1982).

§ The p = 0.05 tabled value for r is 0.23 for the given n.

¶ The p = 0.05 tabled value for D is 0.272 for the given n. 

# The p values are the probability of a Type I error.

Fig. 1. A mean-difference plot with box-plot axes for the paired means and differences of the Lysimeter measures and the Model-1 
(CIMIS) estimates; note that ET0 denotes the daily evapotranspiration in millimeters. Model-1 is based on the operational model 
employed in the California Irrigation Management Information System automated weather station network. Both of the thin axis 
lines span the range of the data. The thick gray bars span the interquartile range with the gap at the median. A simple histogram of 
each univariate variable is shown for each axis; one just to the right of the vertical axis for the paired differences and one just above 
the horizontal axis for the paired means. The “+” within each histogram area is the variable’s mean value. This mean-difference 
plot includes black dots to represent the data, the gray band is the 95% confidence interval for the mean bias error (MBE), the gap 
in the band is the MBE, and the black line is the zero reference line. Notice that the MBE is not different from 0 (p ≤ 0.05). 
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Fig. 2. A mean-difference plot with box-plot axes for the paired means and differences of the Lysimeter measures and the Model-2 
(STAB) estimates; note that ET0 denotes the daily evapotranspiration in millimeters. Model-2 is based on a published aerodynamic 
stability routine. Reference features are the same as in the Fig. 1 mean-difference plot. Notice that the mean bias error (MBE) is 
different from 0 (p ≤ 0.05) and that there is a trend in the paired differences with respect to the paired means.

Fig. 4. Model-2 (STAB) bivariate plot with box-plot axes 
similar to those in Fig. 1. Model-2 is based on a published 
aerodynamic stability routine; note that ET0 denotes the daily 
evapotranspiration in millimeters. This graph, along with 
the Fig. 2 mean-difference plot and the related performance 
measures in Table 1, indicate a considerable lack of agreement 
between the lysimeter observations and the STAB (Model-2) 
predictions.

Fig. 3. Model-1 (CIMIS) bivariate plot with box-plot axes 
similar to those in Fig. 1. Model-1 is based on the operational 
model employed in the California Irrigation Management 
Information System automated weather station network; 
note that ET0 denotes the daily evapotranspiration in 
millimeters. Also included is a gray 1:1 reference line. All the 
related performance measures in Table 1 along with the Fig. 1 
mean-difference plot suggest reasonable agreement between 
the lysimeter observations and the CIMIS (Model-1) model 
predictions.
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generally acceptable to most users. Multiple distribution tests 
for the diff erence distribution indicate reasonable normality; 
these results are also omitted for brevity. In contrast, while the 
precision (r) for Model-2 (STAB) is slightly better than that 
for Model-1 (0.982 vs. 0.980), both of the related accuracy com-
ponents are considerably worse. Figure 2 shows extreme model 
bias (MBE = 0.452 [p ≤ 0.04], over 8 times that of Model-1) 
and a pronounced systematic relationship with the paired 
means. Th e related BV plot (Fig. 4) shows lower concordance 
with the comparatively poorer accuracy due both to a 10-fold 
larger location shift  and about 10% larger scale shift , u = 0.215 
(notice the means μy = 6.48 and μx = 6.03 are not similar) and 
v – 1 = 0.19. In addition, multiple distribution tests for the dif-
ference distribution only marginally suggest normality (again, 
the details are omitted for brevity). Th e diff erences in both 
Liao’s Ap (0.991 vs. 0.949) and rc (0.970 vs. 0.932) are larger 
still than those for Lin’s Cb (0.995 vs. 0.963) and rc (0.975 vs. 
0.946) analogs. Moreover, the other performance measures 
also indicate that Model-2 estimates are probably unacceptable 
to most users. For example, the MSD (smaller is better) for 
Model-2 is over twice that of Model-1 (0.502 vs. 0.243), while e 
(closer to 1 is better) for Model-2 is about 5% smaller than e for 
Model-1 (0.908 vs. 0.954). Finally, the D test result, D = 0.12, 
suggests similarity between the distribution for the observa-
tions and that for the CIMIS (Model-1) estimates because 
p ≤ 0.86 is not signifi cant at a reasonable level. For the STAB 
model (Model-2) comparison, however, the situation reverses 
because p ≤ 0.04 for D = 0.28; this maximum EDF deviation 
occurs at about 7 mm of evapotranspiration.

DISCUSSION AND CONCLUSIONS
Using a physically based model over an empirical model is 

philosophically desirable. Practically speaking, however, the 
former should also perform better in terms of any chosen set 
of measures, target values for the measures, or concepts to 
be selected. Here, the STAB model does not perform better 
for any measure but r. Perhaps with further work it could be 
improved, but such a goal is beyond the purpose and scope 
of this work. Sound model development and assessment 
includes more than setting goals for performance measures 
or comparing them. It should include a careful conceptual 
analysis tailored to the purpose of the application (Oreskes 
et al., 1994; Tedeschi, 2006). In addition, it is unreliable 
to base a decision of model acceptance on a single perfor-
mance measure, let alone on the evaluation of a single data 
set. None-the-less, given the appropriate careful consider-
ations, this example points out the merits of the MD plot 
along with concordance correlation analysis and distribu-
tion comparisons. Any of the difference measures or plots, 
especially the MD plot, reveals the serious bias in Model-2 
estimates; however, they do not directly reveal or deal with 
the scale shift. An r value alone does not adjust for either 
location or scale shift, but either one of the rc statistics does. 
In addition, the comparative concordance evaluation can be 
cast in terms of both comparative precision, accuracy, and 
the related distribution and probability differences. The 
modeler’s toolbox should therefore include MD plots, both 
concordance correlation analyses, and distribution proce-
dures for model performance assessment because, together, 

they provide simple and sound statistically based tests that 
can also add analytical insight.

As previously mentioned, there are other related perfor-
mance measures that also merit consideration, like the total 
deviation index. In addition, Legates and McCabe’s (1999) 
robust versions of d and e are simple and straightforward cal-
culations and may be of interest to many modelers; hence, they 
should also be in a modeler’s toolbox. Robust versions of the 
other measures are possible and perhaps should be further con-
sidered; such measures require a great deal of caution and care 
in use for the model performance application. Poor predictions 
due to model bias or inadequacy are the reason for assessing a 
model’s performance and, hence, should not be subjected to 
robust procedures. Mistakes and other problems with observa-
tions, however, should be identifi ed and screened out or down 
weighted.
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