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Remote sensing of evapotranspiration (ET) has evolved over the last 20 years with the development of
more robust energy balance approaches and the availability of timely remotely sensed imagery from
satellite sensors. This has allowed the use of remote sensing for near-real time water management in irri-
gated systems in the western United States. In this paper a hybrid ET approach is applied to irrigated and
non-irrigated cotton fields at the BEAREX08 experimental site using airborne remote sensing inputs
under highly advective conditions, taking advantage of the available root zone soil water content
measurements for verification of model output. The modeling approach is based on coupling the Two-
Source-Energy Balance (TSEB) and the reflectance-based crop coefficient models. The TSEB model pro-
vides estimates of real crop ET while the reflectance-based crop coefficient approach allows for updating
the basal crop coefficient and the interpolation and extrapolation of ET between the dates of remote sens-
ing inputs facilitating the maintenance of a soil water balance in the root zone of the crop. Actual ET esti-
mates using the TSEB model were compared with measured ET using eddy covariance systems deployed
in four cotton fields during the BEAREX08 experiment. Estimates of soil water content in the soil profile of
both irrigated and rain fed cotton fields were compared with measurements at different depths using
neutron probe observations. Data assimilation techniques were applied to update soil water content val-
ues using estimates based on actual ET from the TSEB model. Results indicate that the hybrid ET modeling
approach using data assimilation produced reliable daily ET interpolated between remote sensing obser-
vations and significantly improved soil water content estimates throughout the root zone profile com-
pared to applying the crop-coefficient technique in a water balance model without the actual ET inputs.
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1. Introduction

Remote sensing approaches for routine estimation of evapo-
transpiration (ET) over large regions are becoming more readily
available [1–3]. These models are based on the solution of the en-
ergy balance equation, using shortwave and longwave band inputs
from satellite sensors to estimate net radiation (Rn), soil heat flux
(G) and sensible heat flux (H) with the latent heat flux (LE)
obtained as a residual (LE = Rn–G–H). The LE can then be extrapo-
lated from a quasi-instantaneous value at the time of the satellite
overpass to a daily ET value using different methods such as the
evaporative fraction or the reference ET fraction [4,5]. Energy bal-
ance methods vary in complexity mainly in the way they parame-
terize and solve for H. The main advantage of thermal-based
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energy balance models is that by solving for H, these models relate
actual ET and soil water state to the surface-air temperature
difference, requiring no soil profile information.

Single-source models such as the Soil Energy Balance for Land
(SEBAL; 2) and the Mapping EvapoTranspiration at high Resolution
with Internalized Calibration (METRIC; 3), solve for H through a
relationship with dT, the near-surface air temperature gradient ob-
tained by solving the energy balance over carefully selected ‘‘hot
and cold’’ (or dry and wet) pixels identified using the thermal
(radiometric surface temperature) and shortwave (surface albedo
and the normalized difference vegetation index, NDVI) bands of
the satellite image. An advancement to the original dT formulation
of Bastiaansen et al. [2], was proposed by Allen et al. [3], where dT
represents a temperature gradient elevated well above the surface
that is linearly related to surface temperature adjusted to a com-
mon elevation for each image. This process bounds the energy bal-
ance within an irrigated area to these two extreme conditions,
circumventing the need for estimating the ‘‘elusive’’ surface aero-
dynamic temperature in the bulk aerodynamic formulation of H
which could vary according to surface type, soil water content,
atmospheric stability and vegetation density.

The Two-Source-Energy-Balance (TSEB) model proposed by
Norman et al. [6] computes components of Rn, H and LE fluxes sep-
arately for soil surface and canopy elements. The fraction of canopy
cover obtained from shortwave band remote sensing is used to
modulate the contributions from soil and canopy within the coar-
ser thermal infrared pixel. This model has shown versatility in its
application to both semi-arid environments with water-limited
natural vegetation as well as in irrigated areas where soil water
content is not limited [7]. The TSEB model requires calibrated ther-
mal-infrared observations adjusted for atmospheric effects and
corrected for surface emissivity in the thermal infrared band to
produce accurate results.

Another remote sensing method used to estimate ET in irrigated
areas is the reflectance-based crop coefficient approach, Kcbrf [8,9]
where spectral inputs in the red and near-infrared bands are used
to obtain a vegetation index such as the NDVI [10] or the Soil Ad-
justed Vegetation Index (SAVI) [11] which in turn is related to the
basal crop coefficient, Kcb [12,13] through a simple linear transfor-
mation. In this approach, a time series of satellite image inputs
tracks the crop growth in each field throughout the growing season
with vegetation indices that are used to obtain the real-time Kcbrf

and adjust the Kcb to match the actual growth conditions. The
Kcb, by definition yields the potential crop ET for a certain leaf area
under a dry soil surface condition (minimum evaporation) and no
limitation of soil water content in the root zone (potential transpi-
ration). In order to obtain the actual ET using the Kcb, a running soil
water balance calculation must be maintained for the root zone, so
that decreases in transpiration due to soil water deficit or increases
in soil evaporation due to an irrigation or rain can be used to adjust
the Kcb into the crop coefficient (Kc) [Kc = Ks � Kcb + Ke, where Ks is
the soil water deficit coefficient (0–1) and Ke is an adjustment to
Kcb for wet soil surface conditions from rainfall or irrigation].

The crop coefficient approach is a simple empirical method that
has been used with success over the past 30 years for irrigation
planning as well as for irrigation scheduling of individual fields
and estimates of ET over large irrigated areas. The use of spectral
inputs to track the basal crop coefficient takes into account the ac-
tual crop growth and its in-field variability due to soil texture and
variations in water content, non-uniform irrigation and fertilizer
applications and other environmental factors. One of the main
advantages of using basal crop coefficients is that they provide a
modeling framework for interpolating and estimating daily ET of
an irrigated area between intermittent satellite coverage. This al-
lows monitoring ET during critical crop physiological stages during
the growing season when there may be missing remotely-sensed
imagery due to cloud cover. Such gaps in remote sensing informa-
tion could reach a month or more when using Landsat Thematic
Mapper which has a 16-day revisit time. Missing images can be
particularly problematic during the active growth stage of many
crops, where there is a rapid increase in vegetation biomass. The
crop coefficient approach requires reliable weather station data
collected within the area being modeled in order to estimate the
reference evapotranspiration and calculate a soil water balance
on a daily basis. This requires information on soil texture proper-
ties related to the water holding capacity.

Clearly there are advantages and disadvantages to both the
thermal-based and crop-coefficient based techniques for ET esti-
mation. An attempt in leveraging the strengths of both approaches
and developing a ‘‘hybrid’’ remote sensing approach for estimating
ET originally proposed by Neale et al. [14] has been developed into
a fully operational modeling systems by Geli [15]. This approach
consists of combining a thermal-based energy balance model for
estimating the actual ET of the crop and the reflectance-based crop
coefficient method to update the basal crop coefficient, tracking
the growth of the crop and allowing for the interpolation of ET esti-
mates in between remote sensing observation dates. The objective
of this research is to rigorously evaluate the ‘‘hybrid’’ remote sens-
ing approach for estimating ET, using data collected during the
Bushland Evapotranspiration and Agricultural Remote sensing
Experiment 2008 (BEAREX08) experiment [16]. This allowed for a
detailed evaluation of the capability of this modeling approach in
estimating ET and soil profile water content in a highly advective
rainfed and irrigated crop environment. Measurements included
high resolution airborne remotely sensed images, ET estimates
using eddy covariance flux towers and profile soil water content
measurements to a depth below 1 meter. Such an extensive set
of measurements to thoroughly test model output were not avail-
able in a previous model validation study, nor was the model ap-
plied under such strongly advective conditions [15], which poses
a significant challenge for remote sensing-based ET models that at-
tempt to extrapolate instantaneous estimates obtained from imag-
ery typically acquired in the morning hours, prior to cloud
development, to daily values which are subject to strong advective
conditions that usually occurs or intensifies in the afternoon hours.
2. Data

2.1. Research site

The data were collected in two dry land and two irrigated cot-
ton fields located at the USDA-ARS, Conservation and Production
Research Laboratory (CPRL), in Bushland, TX (35�110N,
102�060W). The elevation is approximately 1170 m above mean
sea level. Each field was approximately 4.7-ha square in size,
planted to cotton (Gossypium hirsutum). The soils in the experi-
mental fields are classified as Pullman clay loam. Eddy covariance
(EC) surface energy balance/flux towers were installed in the
northeast corner of each field to maximize the upwind fetch in
the predominant wind direction from the southwest (Fig. 1). These
systems measured turbulent fluxes (H and LE) as well as the net
radiation (Rn) and soil heat flux (G). A detailed description of the
instrumentation and post processing of the EC data is presented
in Alfieri et al. [17]. Meteorological data such as air temperature,
wind speed, vapor and atmospheric pressure were obtained from
the EC towers at nominally 2–2.5 m above ground level (agl). In
addition, an automated weather station located within a small
grass field east of the cotton fields provided meteorological data
throughout the year on an hourly or 15-min basis which was used
to estimate the reference evapotranspiration using the Penman-
Monteith equation [13] and provide precipitation for updating



Fig. 1. Description of the study area showing the four cotton fields, the eddy covariance tower locations (stars), neutron probes (green circles), and weather station field
(small grass field on the east side) over a 3band multispectral imagery acquired July 28th, 2008.
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the soil water content beyond the period of the intensive
experiment.

Soil water content in the four cotton fields was measured using
the neutron probe method, described in detail in Evett et al. [18]. In
Fig. 1, the locations of the neutron probe access tubes and the EC
flux towers in the four fields are provided.
2.2. Remote sensing data

High resolution multispectral and thermal infrared images were
acquired with the Utah State University airborne digital system
throughout the growing season. The system consists of three Ko-
dak Megaplus1 4.2i digital cameras with interference filters forming
spectral bands in the green (0.545–0.555 lm), red (0.665–0.675 lm)
and near infrared (NIR) (0.790–0.810 lm) wavelengths [19,20]. The
cameras were mounted through a porthole in a Cessna TP206 aircraft
dedicated to remote sensing missions. The cameras were controlled
with Epix boards and proprietary software on a desktop computer
mounted in the equipment rack. The system’s digital cameras were
calibrated against a radiance standard in a separate experiment pro-
ducing calibration curves relating pixel digital number to radiance.

On the day of each image acquisition flight, a standard reflec-
tance panel with known bi-directional properties was set up at
the CPRL. An Exotech 4-band radiometer was mounted looking
down onto the panel from nadir, measuring incoming irradiance
at one-minute intervals of similar spectral bands. This information
1 The use of trade, firm, or corporation names in this article is for the information
and convenience of the reader. Such use does not constitute an official endorsement
or approval by the United States Department of Agriculture or the Agricultural
Research Service of any product or service to the exclusion of others that may be
suitable.
was used along with the system calibration curves to calculate the
reflectance of the pixels in the spectral image mosaics. The individ-
ual spectral band images were corrected for lens vignetting effects
and radial distortions [20] and registered together into 3-band
images. The individual 3-band images were rectified to a National
Agriculture Imagery Program (NAIP) 1-meter color digital map
base using common control points and stitched together along
the flight lines. The flight line strips were calibrated to pixel reflec-
tance using the panel information and then joined together form-
ing a calibrated image mosaic of the entire study area at CPRL.
These at-aircraft reflectance images were compared with measure-
ments of surface reflectance collected over cotton and bare soil
using ground based multiband radiometers on the day of the over
flights, as well as calibration tarps placed on the southern edge of
the fields on some flight dates and adjusted linearly to remove
atmospheric effects.

The thermal infrared (TIR) images were acquired with an Infra-
metrics 760 Scanner in the 8–12 lm range. The images were re-
corded both on S-VHS video tapes and digitally on a laptop
computer and later extracted at a 60% overlap along the flight lines
for processing. The individual images were geo-rectified to the 3-
band calibrated mosaic as a base image map using common control
points. The rectified images were stitched along the flight lines and
calibrated using the Inframetrics 760 image calibration bar at the
bottom of each image which relates digital number to radiometric
temperature. The calibrated strips were joined together producing
an at-aircraft temperature image mosaic covering the CPRL. The
TIR image pixels were then compared with corresponding ground
based measurements of surface temperature collected using fixed
infrared thermometers and adjusted to these measurements
linearly to remove atmospheric effects and correct for surface
emissivity.



Table 1
Airborne image acquisition dates and times.

Date DOY Acquisition time (CDT) Altitude (agl) (m) MS pixel Res. (m) TIR pixel Res. (m) Satellite

26-Jun-08 178 11:40–11:55 2000 1 3 Landsat TM
12-Jul-08 194 11:50–12:35 2000 1 3 Landsat TM
20-Jul-08 202 12:45–12:50 2000 1 3 Aster
28-Jul-08 210 12:30–12:40 2000 1 3 Landsat TM
5-Aug-08 218 12:34–12:50 2000 1 3 Aster
13-Aug-08 226 11:55–12:05 2000 1 3 Landsat TM
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The image acquisition dates were selected to coincide with
Landsat TM and ASTER overpasses throughout the vegetative
growth period of the cotton crop. Information about acquisition
dates and image specification such as pixel resolution and acquisi-
tion times are listed in Table 1.

3. Methods

3.1. Evapotranspiration models

The remote sensing-based surface energy balance model used
in the hybrid approach was the TSEB of Norman et al. [6] with
modifications described in Kustas and Norman [21,22] The reflec-
tance-based crop coefficient proposed by Neale et al. [9] was used,
applying the SAVI [11] instead of the NDVI as the driving variable
[23].

Key formulations of the TSEB model have recently been evalu-
ated over a wide range of canopy cover and environmental condi-
tions [24,7,25]. In this study, the series- formulation of the TSEB
model was applied with high resolution aircraft imagery. The main
concept behind this formulation is that it separates the surface into
soil and canopy components solving the radiation and turbulent
energy fluxes for each. Then, at a level above the ground surface
called the air-canopy interface, the energy fluxes of each compo-
nent are combined to represent the total surface energy fluxes.
The canopy and soil energy balance is expressed as

LEc ¼ Rnc � Hc ð1aÞ

LEs ¼ Rns � G� Hs ð1bÞ

where the subscripts c and s refer to the canopy and soil, respec-
tively. The net radiation for the vegetated canopy and soil, Rnc

and Rns, were calculated by combining the radiative transfer model
of Campbell and Norman [26] into the TSEB model formulation. For
a detailed description on how to estimate Rnc and Rns refer to [22].

The model uses the radiometric temperature as the main
boundary condition to estimate the energy fluxes. This tempera-
ture is partitioned into soil and canopy components as described
in Eq. (2).

TRð/Þ � ½fcð/ÞT4
c þ ð1� fcð/ÞÞT4

s �
1=4 ð2Þ

where fc(/) is the fraction of vegetation cover at the radiometer
view angle, /, and can be estimated as a function of the leaf area in-
dex as fcð/Þ ¼ 1� exp½�0:5XLAI= cosð/Þ� where X represents the
clumping factor as described in Kustas and Norman [21] and LAI
the leaf area index.

Having the component temperatures, sensible heat flux for the
canopy (Hc), soil (Hs), and total (H) are calculated as:

Hc ¼ qCP
Tc � Tac

rX
ð3aÞ

Hs ¼ qCP
Ts � Tac

rS
ð3bÞ
H ¼ qCP
Tac � Ta

rA
ð3cÞ

where q is the air density (kg m-3), CP the specific heat of air
(� 1013 J kg-1 K-1), Tc, Ta, Ts, and Tac the temperatures of the canopy,
air, soil, and within canopy air space, respectively (K), rX the resis-
tance in the boundary layer near the canopy (s m-1), rS the resis-
tance to heat flux in the boundary layer immediately above the
soil surface (s m-1), and rA the aerodynamic resistance (s m-1). The
boundary layer resistance rX was calculated according to Norman
et al. [6] and rS and rA were calculated according to Kustas and Nor-
man [21].

For the canopy latent heat flux, a modified form of the Priestley-
Taylor equation [27] is used to initially estimate LEc

LEc ¼ aPTCfG
D

Dþ c
Rnc ð4Þ

Here, aPTC is a variable related to the so-called Priestley-Taylor
coefficient, but in this case defined exclusively for the canopy com-
ponent, as was suggested for row crops by Tanner and Jury [28].
The variable aPTC is normally set to an initial value of �1.3, except
under well watered partial canopy cover conditions in strongly
advective environments where a higher value (aPTC �2) may be
more appropriate [21], fG is the fraction of green vegetation, D is
the slope of the saturation vapor pressure versus temperature
curve, and c is the psychrometric constant (�0.058 kPa C-1).
Although this study was conducted under strong conditions of
advection, the vapor pressure deficits above the irrigated cotton
were not significantly large and therefore aPTC was assigned a va-
lue of 1.3 [24]. Under stress conditions, the TSEB model iteratively
reduces aPTC from its initial value, as described in Kustas and Nor-
man [21] and Li et al. [25].

The latent heat flux from the soil surface is solved as a residual
to the soil energy balance equation LEs = Rns–G–Hs with G esti-
mated as a fraction of the net radiation at the soil surface as
G = cGRns.

The value of cG varies with soil type and water content condi-
tions as well as time of day, due to the phase shift between G
and RnS over a diurnal cycle; however, for the midmorning to mid-
day period, when TIR satellite imagery are typically acquired, the
value of cG can be assumed constant [29].

The hybrid model is programmed within the Spatial Evapo-
Transpiration Modeling Interface (SETMI) [30] developed in the
ArcGIS environment and includes the TSEB model and the reflec-
tance-based crop coefficient models. Remote sensing inputs can
be from either satellite or aircraft platforms. The SETMI model
can produce spatial maps of the energy balance fluxes (Rn, G, H
and LE) on the date of remote sensing image inputs as well as daily
ET maps by extrapolating LE to daily values using either the evap-
orative fraction or the reference ET fraction [5]. We used the evap-
orative fraction method in this study as it has been shown to
produce more reliable estimates for surfaces with heterogeneous
cover under advective conditions [5]. The model also allows the
selection of a pixel or group of pixels in the input images corre-
sponding to a location on the surface and estimates the soil water
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balance for that location, tracking crop development using the
reflectance-based crop coefficient and estimating daily ET over
time bridging remote sensing overpass dates. This feature was
used to estimate the water balance for pixels surrounding the soil
water neutron access tubes.

Spatially-distributed energy fluxes from the TSEB model were
compared to measurements from the EC towers by computing
the upwind source-area contribution of the turbulent fluxes using
a flux footprint model described below. Since the EC systems
typically underestimate the turbulent fluxes, H and LE, and because
the remote sensing based energy balance model used imposes en-
ergy conservation, the closure of the EC data [(Rn � G) = (LE + H)]
was forced using the Bowen ratio (H/LE) to partition the missing
flux between H and LE [31].

3.2. Footprint model

Generally turbulent flux measurements obtained by Bowen ra-
tio or EC systems are a weighted integral contribution from the up-
wind source area (SA) or footprint. In this paper we estimated the
flux footprint using the model described by Horst and Weil [32,33].
The model provides approximately 90% of the total SA that contrib-
utes to the measured fluxes. Flux footprints were utilized to inte-
grate the TSEB model spatial estimates of the four surface energy
balance components as well as the daily ETTSEB, which were then
compared with the EC measurements for evaluation. In Fig. 2,
examples of the estimated flux footprints for two different dates
are illustrated. The wind direction was from the north on July 12,
so only EC systems 8 and 9 (Fig. 1) were used for comparison on
those dates as measurements from the remaining EC flux towers
were not representative of the research cotton fields due to their
position and sensor orientation. The size and length of the foot-
prints were estimated using measured wind speed, wind direction,
the variance of the wind direction distribution, estimated stability
variable, the Monin-Obukhov length and aerodynamic roughness
length. The apparent differences in shape and size between the
footprints we obtained and those estimated by Alfieri et al. [17]
Fig. 2. Upwind flux tower footprints for (a) July 12th (DOY 194) and (b) July 20th (DOY
distributed energy balance fluxes.
for the same EC flux towers were due to two factors: (1) In our
analysis the footprints were estimated for the specific hour encom-
passing the flight overpass time, whereas Alfieri et al. [17] aver-
aged the estimated the footprint for each hour during the day to
compute a representative footprint for the day; this included mul-
tiple wind directions as winds shifted during the day, resulting in a
wider, tear-drop shaped footprint; and (2) Alfieri et al. [17] used
the Hsieh et al. [42] footprint model, which is slightly different
than the Horst and Weil [32,33] used in this study.

3.3. Soil water balance model

A one dimensional soil water content dynamic model was used
to provide estimates of the water content status at multiple layers.
The model used was similar to the approach described by Sellers
et al. [34]. The soil water content balance on a daily basis for the
top layer is modeled using Eq. (5) while all layers below are com-
puted using Eq. (6) as expressed below

D1
dh1

dt
¼ I � E� S1 � Q 1;2 ð5Þ

Di
dhi

dt
¼ Qi�1;i � Si � Q i;iþ1 ð6Þ

where D is the layer thickness, h the soil water content, t the time
increment, I infiltration rate, E evaporation rate from the soil surface
and the upper most layer, i the number of soil layers which varies
between 1 and n the total number of soil layers, Si water uptake
from a layer i the root zone, Qi,i+1 leakage or soil water flux from
layer i to i + 1, and Qn the drainage from the bottom most layer. A
detailed description of how to implement and estimate the various
components of the model is presented in Geli [15]. In this study, the
soil layer depths were selected to match the neutron probe mea-
surement layers and facilitate comparisons.

The water uptake from the different soil layers was estimated
from the actual crop ET based on the soil water balance (ETWB) ob-
tained using the crop coefficient as:
202) at the time of the aircraft overpass used to weight and integrate the spatially
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ETWB ¼ Kc � ET0 ð7Þ

Kc ¼ Kcb � Ks þ Ke ð8Þ

where Kc is the crop coefficient for cotton, Kcb the basal crop coeffi-
cient updated using the reflectance-based crop coefficient (Kcbrf)
estimated spatially on each date of airborne image availability, Ks

a soil water content deficit coefficient and Ke a soil surface evapora-
tion coefficient applied only on days when the soil surface is wet
from an irrigation or rain event [12,13].

3.4. Assimilation of ETTSEB in to ETWB

In the hybrid approach, the analysis starts with the water bal-
ance calculations preferably when soil water content is at field
capacity in early spring, or after harvest of the previous growing
season, incorporating the winter and spring precipitation into the
profile. The crop coefficient methodology is then used to initiate
the extraction of water by means of actual evapotranspiration.
On a specific day that a remote sensing image is available; the Kcbrf

is then used in the calculation of evapotranspiration instead of the
Kcb. On this date, two estimates of ET are made, ETWB and ETTSEB. An
assumption of the hybrid ET approach is that ETTSEB provides a
more reliable estimate than ETWB as it is integrating and represent-
ing the soil water availability from estimating soil and canopy
temperatures.

The actual ET estimates from the TSEB model (ETTSEB) were
assimilated into the soil water balance using the statistical interpo-
lation method [35] as described in Eq. (9).

ETA
WB ¼ ETB

WB þWðETTSEB � ETB
WBÞ ð9Þ

where superscripts A and B refer to after and before assimilation,
respectively, and W the weight or Kalman gain of the error for each
of the observation points which can be estimated as

W ¼ e2=ð1þ e2Þ ¼ r2
B=ðr2

B þ r2
AÞ ð10Þ

where e2 is the normalized observation error, r2
A and r2

B the error
variances in ETTSM and ETWB estimates, respectively, with respect
to ET measurements. This means that the value of r2

B before assim-
ilation is obtained from the error in ETWB with respect to ETEC (ET
measured by the EC) and the value of r2

A after assimilation resulted
from the error in ETTSEB compared to ETEC. In this analysis, the result-
ing value of W was about 0.86 representing a constant weight ap-
plied for the entire period of the study. Detailed description of
this methodology can be found in Geli [15] and is also similar to
the approach followed by Schuurmans et al. [44]. The assimilated
values of ET were used to update soil water content and keep the
soil water balance on track with field conditions.
4. Results and discussion

The development of the cotton crop in the study fields can be
seen in Fig. 3 where the SAVI at three different access tube loca-
tions included in the soil water content modeling has been plotted
over time. The SE field had attained greater biomass values than
the NE field by Day of Year (DOY) 226 when the last over flight
was conducted. This is confirmed by the LAI measurements in
the same fields described by Evett et al. [18]. Growth rates in the
rain fed cotton fields NW and SW were severely hampered, im-
pacted by the low soil water content due to high evaporative de-
mands and lack of precipitation during the early part of the
growing season, requiring re-planting and irrigation to promote
germination of the seed. Data from the NW field were not used
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Fig. 5. Image maps showing temporal evolution of 3-band multispectral imagery (Green, Red, NIR shortwave bands), radiometric surface temperature (TIR) and latent heat
fluxes (LE) estimated using the TSEB model for the study fields.
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for the soil water balance modeling because of poor crop develop-
ment around the neutron probe access tubes where soil water con-
tent was measured (see Fig. 1). As of result of this differential
growth in the three fields, the reflectance-based basal crop coeffi-
cient did not reach effective full cover for cotton (value of 1.15 as
per Allen et al. [13]) in the NE and SW fields by the last flight over-
pass date, and was almost at that threshold in the SE field (Fig. 4),
with some locations (pixels) having reached the effective full cover
value, such as the area around the modeled neutron probe location
and the locations where the LAI was measured [18].

The spatial patterns of the shortwave bands (false color), ther-
mal-infrared (TIR), SAVI and TSEB-derived LE are illustrated in
Fig. 5 for the six dates when airborne imagery was acquired. The
spatially distributed four flux components, Rn, G, H and LE were
integrated over the upwind flux footprint estimated for the EC
towers and compared with the measurements from the four cotton
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Fig. 6. Estimated surface energy balance components from the TSEB model at the
time of aircraft overpass versus observations from the EC towers after forcing
closure.

Table 2
Summary of TSEB model performance statistics.

Rn (W m-2) G (W m�2) HBR (W m�2) LEBR (W m-2) ETBR (mm/day)

RMSE 22 50 46 41 0.64
MAE 18 39 40 32 0.53
MBE 1 26 �34 8 0.04
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Fig. 7. Estimated and measured daily ET from the EC towers in the four cotton fields
on the image acquisition dates shown in Table 1 and Fig. 5.

Table 3
Performance/difference statistics for estimated profile of soil water content using the
water balance model without and with assimilation of ET estimated with the TSEB
model.

Fields and layers Without assimilation With assimilation

RMSE (mm) MBE (mm) RMSE (mm) MBE (mm)

NE field
Layer depth (cm)
0–20 10.1 �5.9 10.0 �3.4
20–40 10.2 �2.8 6.8 0.3
40–60 5.5 2.2 5.0 3.6
60–80 5.0 1.0 3.2 2.6
80–100 2.4 �0.2 2.2 0.1
100–120 5.1 �5.0 5.1 �4.9
All layers 19.6 �10.7 10.0 �1.7

SE field
Layer depth (cm) 10.9 �7.3
0–20 10.5 �6.4 9.6 �5.7
20–40 7.5 �1.8 8.0 �4.9
40–60 7.5 2.9 5.9 �0.7
60–80 5.3 4.4 7.7 4.2
80–100 3.0 1.7 5.8 5.4
100–120 3.1 2.9 3.0 2.2
All layers 23.9 �6.5 17.7 0.5

SW field
Layer depth (cm)
0–20 7.5 1.7 6.8 2.3
20–40 8.3 �5.1 7.5 �4.4
40–60 4.3 0.0 3.9 0.6
60–80 9.9 7.0 10.6 9.8
80–100 7.4 5.5 6.5 4.3
100-120 6.6 �6.6 6.6 �6.6
All layers 20.4 2.6 17.6 6.2
All fields 21.5 �6.8 14.9 0.6
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Fig. 8. Modeled total soil water content in the root zone (1.2 m) (a) before and (b)
after assimilation for all fields.
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fields in Fig. 6. Model performance was evaluated using the root
mean square error (RMSE), the mean absolute error (MAE), and
the mean bias error (MBE) and presented in Table 2. Results indi-
cate that the TSEB model reproduces fluxes for both irrigated and
rain fed cotton fields comparable with other studies that applied
the TSEB model with ground-based and/or satellite remote sensing
data collected during BEAREX08 [36–38]. However, in using the
high resolution airborne imagery, this is the only study of this
experiment that was able to compute a detailed upwind flux foot-
print contribution of model output to compare with the eddy
covariance measurements. The instantaneous LE fluxes were
extrapolated to daily ET values using the reference ET fraction
and compared to daily ET measured with the EC systems adjusted
for closure using the Bowen ratio approach (Fig. 7). The perfor-
mance statistics are also shown in Table 2 and indicate a relatively
small bias and MAE value.

The hybrid approach was applied to pixels surrounding 3
representative access tubes, one in each field (NE, SE and SW)
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and captured a range of LAI and biomass and growth patterns. The
soil water balance was conducted at each location first without
assimilation using the Kcbrf approach. As shown in Fig. 4, the values
of the Kcbrf throughout growing season were lower than those tab-
ulated by Allen et al [13]. This is an advantage of the Kcbrf method
which tracks the actual growth conditions in the field. These differ-
ences in crop coefficients will impact the modeled soil water con-
tent in the root zone and thus the estimated ET. In Table 3 the
estimated soil water content values with and without assimilation
of ET are compared with the measurements for the different soil
layers modeled. Note that estimates of soil water content were
computed for 7 layers, each 20 cm in thickness, centered at 0.1,
0.3, 0.5, 0.7, 0.9, and 1.10 meters. When assimilating ET, the results
obtained from the TSEB model applied to the airborne imagery
(ETTSEB) were used and the soil water balance recalculated resulting
in an improved estimation of the soil water content (see Table 3)
with smaller difference statistics by layer modeled and for the total
root zone profile (Fig. 8). Before assimilation, the RMSE values for
the total root zone profile were 19.6, 23.9, and 21.5 mm for the
NE, SE, and SW fields, respectively. After assimilation the RMSE val-
ues were reduced to 10.0, 17.7, and 17.6 mm for the same fields.
Likewise, before assimilation the soil moisture for the total profile
was underestimated for the three fields (see MBE values in Table 3),
while after assimilation the MBE was greatly reduced to less than
one millimeter for the SE and SW fields.

Overall, the soil water content estimates look reasonable for
both irrigated and rain fed fields. This is an important point to
consider, since modeling soil water content in irrigated areas is
generally more accurate than in rain fed agriculture, due to the
re-setting of the soil profile to field capacity after each irrigation
event. In rain fed agricultural areas there is greater vertical vari-
ability of soil water content affecting plant uptake [43] along with
greater spatial variability due to non-uniform precipitation input
across a landscape. The study by Geli [15] conducted over rain
fed fields in central Iowa under minimal advective conditions, ob-
tained similar results to the current study for the top-30 cm of the
soil profile, but over spatial scales of about 10 by 30 km.

However it is important to note that there was a general ten-
dency for larger discrepancies between modeled and observed soil
water content for the top two soil layers. This was due in part to
the greater spatial and temporal variability in the soil water con-
tent observed near the surface during this experiment [39]. It is
also possible that the root distribution/extraction model we used
for cotton might require further refinement to be applicable to
the particular soil type and crop variety used in this study.
5. Conclusions

The TSEB model as programmed in the SETMI environment and
using high resolution airborne imagery as input provided reliable
instantaneous and daily LE, (Table 2) The estimated soil water con-
tent profiles from a water balance model were compared to several
neutron probe access tube locations using ET estimates from the
crop coefficient method and also by assimilating the TSEB model
computed ET. The differences between the modeled and observed
soil water content values using the neutron probe technique indi-
cated that the assimilation of ET values from the TSEB model signif-
icantly improved the agreement. This suggests that assimilation of
robust actual ET estimates from a thermal-based surface energy
balance model can significantly improve a water balance model
output of profile soil water content as suggested earlier by Crow
et al. [40]. In addition, there are other soil water content metrics
from the TSEB model that have been assimilated into water balance
models and shown to significantly improve soil water content pro-
file estimates [41]. There was a tendency for larger discrepancies
between modeled and observed soil water content estimates in
the top layers of the root zone. This was due in part to the inherent
increased variability in near surface water content, but also differ-
ences could be decreased by using an improved, more robust root
distribution and extraction model for the cotton variety. This will
be evaluated in a future study with these data.

This paper represents a progression of research effort towards
providing improved spatial-temporal estimates of ET and soil
water content in the root zone of agricultural crops through a hy-
brid ET approach tested over both irrigated and rain fed agricul-
tural fields. Plans are underway to evaluate this hybrid ET model
over irrigated agricultural areas within scales of 8 and 12 digits
HUC (hydrological Unit Codes) of the U. S. Geological Survey.
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