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Abstract

Agroclimatic models offer many potential benefits including reduction of site-specific field
experimentation, better interpretation of climatic limitations to crop production, evaluation of
risks and benefits of proposed management practices, communication of research results, and
enhanced understanding of biological and physical systems. To date, model development has
far exceeded validation and implementation. Crop models range from simple, statistical models
through complex, process-oriented models. Data required to support development and valida-
tion of these models are quite different, as are the potential applications. Simple models require
large data sets for development and cannot be transferred outside the region for which they were
developed, but utilize easily available data for implementation. Development of complex
models contributes to scientific understanding and offers the potential for a wide range of
applications, but requires detailed information. Intermediate level models have more manage-
able data requirements than the complex models and offer a greater level of transferability than
simpler models, so are most promising for use in developing countries. Regardless of the
complexity of the model, and regardless of whether existing models are utilized or a new model
is developed, a successful modeling application must be carried out as a part of a broad
approach to problem solving, which includes a clear statement of achievable goals, explicit
statement of assumptions and hypotheses based on project will be conducted, careful formula-
tion of the assumption and hypotheses into mathematical-based computer code, critical evalua-
tion of the model outputs including validation, using independent data sets, and communica-
tion of results to the end user in a useful form.

Résumé

Modélisation des systemes agroclimatiques—lignes directrices et perspectives : Les modéles
agroclimatiques présentent divers avantages potentiels et, entre autres, permettent de réduire
D'expérimentation au champ, d’interpréter mieux les contraintes climatiques a la production,
d’évaluer les risques et les avantages de pratiques d ' aménagement, de mieux communiquer les
résultats de recherche et d améliorer la compréhension des systémes biologiques et physiques. A
ce jour, le développement de modéles est de loin en avance sur leur adoption et leur mise en
place. La gamme va des simples modéles statistiques a ceux plus complexes et déterministes. Les
données nécessaires pour développer et installer ces modéles sont bien différentes, tout comme
les applications potentielles. Les modéles simples exigent beaucoup de données pour étre
développés et ne sont pas transférables en dehors de la région pour laquelle ils ont été générés,
par contre leur mise en place requiert des données facilement accessibles.

Le développement de modéles complexes contribue 4 la compréhension scientifique et offre le
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potentiel d’'une large gamme d’applications; leur exigence en informations précises est par
contre élevée. Les modéles intermédiaires ont des exigences en données plus faciles a gérer que
bien des modéles complexes, leur degré de transférabilité est supérieur a celui des modéles plus
simples et par 14, ils sont plus prometteurs pour les pays en voie de développement.
Indépendamment de la complexité du modéle et du fait que certains modéles existants soient
utilisés ou qu’un nouveau modele soit développé, une bonne application doit étre réalisée
comme un maillon d’une approche large tendant 4 résoudre des problémes. Cela inclut une
définition claire des objectifs 4 atteindre, des estimations et hypothéses qui sous-tendent le
projet, une formulation attentive de ces estimations et hypothéses en code mathématique pour
ordinateur. On procédera 4 une évaluation critique des retombées du modéle en utilisant la mise
en place & ’aide de données indépendantes et la communication des résultats 4 'utilisateur final

sous une forme exploitable.

Introduction

The use of agroclimatic models has increased in the
past several years to the extent that hundreds of
agricultural models are now documented in scien-
tific literature (e.g., France and Thornley 1984).
Ambitious goals have been set in many of these
modeling efforts, but researchers, as a community,
are just beginning to deal seriously with the prob-
lems of how to apply models to meet specific goals
and objectives in agricultural research, produc-
tion, and management. The resources being devoted
to model development far outweigh those being
devoted to model evaluation or to model imple-
mentation, and the time has come for scientists in
the agricultural research community to set clear
and realistic goals for future modeling efforts.

Why Use Models?

The attractions of agroclimatic models are obvious

as we deal with the complexities of cropping sys-

tems. While the suitability of current models for

dealing with these complexities is not always clear,

it is not possible to absorb and interrelate all the

necessary factors to describe an agricultural system

without the use of some type of model. Currently

available models can offer the following benefits:

® reduction of site-specific, long-term field ex-
periments;

® interpretation of climatological records in terms
of production potential and limitations;

® cvaluation of expected returns to soil- and crop-
management practices;

® cvaluation of risks associated with management
practices;
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® communication of research results between
locations;
® cnhanced understanding of biological and phy-
sical systems and their interactions; and
® conceptualization of multidisciplinary activities.
These factors are essential to improve the effec-
tiveness of our research efforts, whether it be in a
high-input or a low-input agricultural system. Eval-
uating the array of published models to determine
the suitability of specific models to specific prob-
lems is a very complex process . The objective of
this paper is to put forth some observations and
suggestions on model evaluations and applications
to agroclimatic systems.

Agroclimatic Models

Agroclimatic models can be described at three

general levels:

1. Simple, statistical models.

2. Intermediate, crop growth models.

3. Complex, process-oriented models.
Characteristics of these types of models as sum-

marized by Norman (1981) and Stapper (1986) are

shown in Figure 1. The data required to support

development and utilization of these models are

very different, as are the applications that can be

made of the models after they have been developed

and validated.

Simple Models

Simple, statistical models are primarily based on
regression analysis and empirical relationships.
They require a large dataset to develop and cannot



Simple Intermediate Complex
Category Emperical Crop growth Crop process
Crop weather Crop systems
Type Statistical static # Mechanistic dynamic

Relationships

Correlative

Phenomenological

Mechanistic
Scale Regional Field m?2 - > Leaf
Time step Seasonal Daily Hourly
Use Operational Operational/Research Research
Character Requires data from Limited scope Broad scope (yield, ET.

many years to derive
parameters to
estimate yield

Rely on plant being good integrator of
environmental effects in time and space

(yield, water use,
growth stage,
leaf area, etc.)

soil evaporation, canopy
temperature, dew, canopy
profiles, soil and canopy

fluxes, stomatal behavior, etc.)

Integration over time
and space explicit

Figure 1. Characteristics of crop models of different levels of complexity.

be applied to simulations outside the region from
which they were developed. An example of a sim-
ple regression model is given in Figure 2. Jones and
Hauser (1975) developed a statistical model to de-
scribe sorghum yield as a function of available soil
water at planting. They used data collected over a
14-year period for model development and it is
doubtful if a more complex type of model could
predict yields better for the research station at
Bushland, Texas, where the data used to develop
the model were collected. The grain sorghum yield
at Bushland is strongly related to soil water stored
in the profile at planting, and assuming that aver-
age rainfall and temperature conditions prevail
during the growing season, the soil water at plant-
ing is a good predictor of yield.

Figure 3 shows the performance of the simple
regression model from Figure 1 in predicting the
yield of grain sorghum at Bushland using data from
experiments that were not used to develop the orig-
inal model. Many of the data sets are distributed

around the 1:1 line, with a similar amount of scat-
ter as was seen in the original data set. However,
sorghum grown during a high-rainfall season (re-
presented by the ® symbol) yielded much more
grain than would have been predicted by the
model. In addition, the model cannot be used to
predict yields for other locations, even those fairly
close to Bushland, because all the data used to fit
the model were collected at a single location. Bush-
land is located in a region of pronounced rainfall
gradients (60 mm a-! for each 100 km in the EW
direction) and temperature gradients in the NW to
SE direction (first and last frost dates are particu-
larly important). Therefore, a simple empirical
model, dependent on average conditions across the
range of data used to fit the model would not
provide valid predictions for other locations. Re-
gression models work when average conditions
prevail but fall apart during unusual growing sea-
sons. However, it is during the unusual seasons
that predictions of crop performance are needed
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‘Figure 2. A simple regression model describing
grain sorghum yield as a function of soil water at
planting. Bushland, Texas, 1959-1972 (Jones and
Hauser 1975).
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Figure 3. Evaluation of the Jones and Hauser
model (Fig. 2) for predicting sorghum yields at
Bushland, Texas. Data from (O) O.R. Jones, per-
sonal communication, 1973~84; (i) Unger 1984;
and (s, +, O) Unger 1978 (1974, 1975, and 1976
data).

most. Thus, the use of these types of models is
limited and often not practical.

Many simple crop models were developed for
much broader applications than the Jones and
Hauser (1975) model discussed above for illustra-
tion purposes. A useful discussion on the develop-
ment of an empirical crop-weather model is given
by Feyerherm and Paulsen (1986). Slabbers et al.
(1979) have discussed the potential applications
and evaluation of simple crop models.
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Intermediate Level Models

Intermediate level models utilize descriptions of
distinct processes such as photosynthesis and trans-
piration, which are known to be important in con-
trolling crop growth. They generally operate on a
daily time scale, because of the availability of daily
climatic input data and because the knowledge of
the biological and physiological processes on a
shorter time scale is not adequately understood.
Calculations are often made on the basis of a single
plant or land area and then converted to the field
level, assuming uniform soil and plant conditions
across the field.

Daily growth is usually calculated in one of two
ways—either the model calculates a daily net pho-
tosynthate production based on daily interception
of solar radiation (e.g., Arkin et al. 1976, Charles-
Edwards 1982, pp. 82-85, Gallagher and Biscoe
1978), or the model calculates photosynthesis and
respiration separately, based on solar radiation
and temperature, and determines net photosynthe-
sis as the difference of the two (e.g., Baker et al.
1983, Goudriaan 1982).

Daily evapotranspiration is calculated as a func-
tion of the potential evapotranspiration (PET),
crop canopy, and soil-moisture level. One of the
most utilized approaches to the calculation of
evapotranspiration is based on Ritchie’s (1972)
model, which partitions PET to crop and soil sur-
faces on the basis of leaf area index (LAI). Transpi-
ration and evaporation are then calculated separ-
ately, because they are affected by different physical
and physiological processes. PET rates are most
often calculated by the Penman (1948) method, the
Priestley and Taylor (1972) method, or using pan
evaporation rates.

Crop phenology is calculated as a function of
temperature or thermal units. The partitioning of
dry matter is dependent on crop growth stage and
is generally estimated from empirical relation-
ships. Stress effects that are most often included in
crop growth models are water stress, nitrogen
stress, and, less frequently, phophorus stress. The
effects of water stress on various plant processes
are calculated by empirical methods, generally
based on soil-water content and sometimes on
PET rate. Interactions among stresses are seldom
considered.

Figure 4 illustrates the application of an inter-
mediate level model, SORGF (Arkin et al. 1976),
to determine the probability of grain sorghum
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Figure 4. Use of an intermediate level model,
SORGF (Arkin et al. 1976), to evaluate the effect of
soil water at planting on grain sorghum yield. Bush-
land, Texas, 1958-1984, Pullman clay loam.

yield with high or low soil-water content at plant-
ing at Bushland, Texas. The graph illustrates pre-
dicted yields for a 26-year period, assuming high
(210 mm) or low (105 mm) available soil water at
the end of the fallow period, prior to planting grain
sorghum. The predicted yields for each case (high
or low soil water content) were ranked and plotted
to illustrate the probability of obtaining yields as
great as at a certain level. The graph shows that
809 of the time, the extra soil-water content made
a substantial contribution to the yield level. At the
50% probability level, the high soil-water regime
produced yield predictions of less than 4300 kg™,
and the low soil water regime produced yield pre-
dictions of less than 5000 kg ha-!. These yields are
too high for the Bushland area compared to those
in Figure 2. The reasons for yield overpredictions
are not yet understood, but the principle of the
response to soil water is valid. Under lower soil-
water regimes (e.g., different soils or annual crop-
ping), the two curves would come together in the
driest 10-209% of the years, as well as in the wettest
years because the rainfall would not provide ade-
quate water to produce a crop without a contribu-
tion from stored soil water.

De Wit and Penning de Vries (1985) present a
good overview of a hierarchy of models with
increasingly complex models used when more lim-
iting factors of production are considered—from
light interception and temperature to water, ni-
trogen, phosphorus, and other minerals. Each level
of model incorporates concepts from the previous

level of model and includes additional production-
controlling processes.

Intermediate level models span research and
operational applications. They allow researchers
to interrelate knowledge from different disciplines.
They have contributed considerably to the advance-
ments of science by drawing attention of the scien-
tists to description of processes and mechanisms,
and to quantitative rather than qualitative descrip-
tions of relationships. The data requirements are
generally available, but an expert must oversee
compilation of data sets to ensure high quality
data. It is important to remember that there are
still many empiricisms built into most of these
models and few of them have been rigorously
tested and validated. Norman (1981) illustrated
that intermediate level models have a tendency to
produce large errors.

Complex Models

Complex models have not yet reached the point of
general availability. Each model is generally linked
to a specific researcher or research group. The goal
of this type of model is to eliminate empiricism
from the model; to describe the plant canopy in
physical, biological, and physiological terms. When
this type of model has been developed and vali-
dated, it is extremely flexible in potential applica-
tions. Norman has applied the CUPID model to
such diverse applications as analysis of canopy
temperature (Norman 1979), leaf wetness (Nor-
man and Campell 1983), and microclimate and
pest management (Norman 1982). The input re-
quirements for complex models are quite exten-
sive, including detailed hourly climatic data, soil
and plant reflectance properties, leaf size, leaf
angle distribution, root distribution, plant and
canopy resistances, etc.

Complex models incorporate existing knowl-
edge about crop production systems, and contrib-
ute to the advancement of the agricultural sciences
by narrowing down gaps in the existing knowl-
edge. Use of complex models requires an active
and well-supported research program to allow
investigation of relationships and processes that
are not well understoocd. They are not used in
operational programs at this time because the data
required to support complex models are not gener-
ally available.
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Expert Systems

In future, many modeling applications will utilize
‘expert systems,’ which incorporate existing knowl-
edge into computer-based systems, organized to
aid in decision making (Grable, In press). Compu-
ter hardware and software are being developed,
which will establish decision-making processes
patterned after the human decision-making pro-
cesses. The computer will make many of the ‘trial
and error’ iterations involved in decision making,
utilizing encoded rules, data bases, and user inter-
face systems (Barrett et al. 1985). Expert systems
provide a way of ‘packaging’ models that make
them easily accessible to users and easy to inter-
pret. The models embedded in current expert sys-
tems are generally sophisticated, intermediate-
level models. An expert system, COMAX (Cotton
Management expert), is currently being tested by
cotton growers in the southeastern United States
to aid in making management decisions, relating to
in-season fertilizer application, irrigation, harvest
date, and other factors (Agricultural Research
Service 1986). COMAX incorporates a crop growth
model called GOSSYM (Baker et al. 1983); user
interface programs and built-in data bases differ-
entiate between the ‘model’ and the ‘expert system’
that was developed specifically as a decision-
making tool for farm managers.

Systems Analysis

For any modeling effort to be successful, it must be
undertaken as a part of a project that has specific
and achievable objectives. A model should be
viewed as a tool used to achieve a goal, rather than
as an achievement by itself. The overall process of
solving problems by the use of a model will be
described in this paper as ‘systems analysis’. The
essential components of systems analysis are out-
lined in Figure 5. As is indicated, systems analysis
is an iterative procedure—the results of each effort
are used to refine and improve previous steps until
a satisfactory level of performance ‘as initially
defined by the project team’ is achieved.

Setting Simulation Project Objectives

A crucial step in the problem-solving process is the
statement of clear, obtainable goals.
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Figure 5. Schematic diagram of systems analysis
including model development.

A group that sets a goal to ‘stop soil erosion’ or
to ‘end world hunger’ will not achieve those goals
in the foreseeable future. Instead their efforts
might become so diffuse and the possibility of
achieving their goal so hopeless that very little will
actually be accomplished. Several components are
necessary for goal setting. First, it is necessary to
identify and then maintain active, two-way com-
munication with the end user throughout the proj-
ect. A model written to provide information about
maize yields to a national agricultural ministry will



be very different from a model which is written to
provide information to a farmer. It is important to
be realistic in evaluating available resources includ-
ing people, money, data, and facilities, and to spec-
ify a time frame for the completion of various
stages of the project. An additional factor that is
often omitted is the specification of required per-
formance levels of the model and the evaluation
techniques. An example of this might be that the
model should be able to predict regional maize
yields to the Agricultural Ministry within 25% of
actual yields, 9 years out of 10, with a lead time of
four weeks before harvest begins. If the goals are
set keeping these criteria in mind, then the model-
ing group will be able to determine when they have
met their goals and finished the project.

This goal-setting step should include the active
participation of the end user, i.e., the research team
that will be putting the model together, and the
administrative hierarchy which will be overseeing
the project.

State Hypotheses and Assumptions

Once the objectives of the project are stated, then
the process of trying to accomplish those goals can
begin. At this point, the hypotheses and assump-
tions under which the team will be working should
be clearly stated. In order to do this in a manner
that will lead naturally into a modeling effort, the
problem should be broken down into manageable
subunits. The assumptions and hypotheses asso-
ciated with each subunit must first be set out in
specific and quantifiable statements, and then
interactions among the various subunits must be
defined. Rather than stating that ‘growth is related
to water use of plant’, a more usable hypothesis
would be that ‘the daily dry-matter production of
the crop decreases from some upper limit as trans-
piration for the plant on that day’. McKinion and
Baker (1982) listed important hypotheses and as-
sumptions that were identified and then incorpo-
rated into a cotton growth model.

As was the case in setting the overall objectives
of the project, active participation at all levels from
administrative through scientific to user levels is
necessary to adequately define the assumptions
and hypotheses under which the project will be
conducted.

Formulate Hypotheses and Assumptions

Formulation of hypotheses is the process of ex-
pressing ideas stated verbally in a mathematical
form. The process of formulating hypotheses and
assumptions associated with the project may be
quite time consuming. However, a logical sequence
of steps should be followed just as in the previous
phases. The first step is to graph the interesting
relationships using existing data or knowledge.
Locating and evaluating the usefulness of available
data requires considerable knowledge of the sub-
ject matter. After looking at the data in a graphical
form, each hypothesis should be rewritten in an
appropriate numerical form that describes the
shape of the curve indicated by the points on the
graph and the equations solved to obtain the coef-
ficients associated with each equation (Ross 1981).
In many cases, the dependent variable (unknown)
of one equation will be used as the independent
variable (known) of another equation. There are
many statistical hazards associated with this pro-
cedure, but they are unavoidable in many types of
model building. Consultation with a statistician at
this point may produce a more valid and stable
model (Chanter 1981). Equations must then be
translated into computer code for solution.

This step of the systems analysis process differs
from the other steps in that it must be conducted by
people with specific scientific, technical, mathem-
atical, statistical, and/or computing skills. If the
team responsible for conducting the project is lack-
ing in some of these skills, it can reasonably seek
assistance from persons who have the necessary
expertise (i.e., mathematicans, statisticians, sys-
tems analysts), and who have not been involved in
setting the overall goals and defining the hypo-
theses and assumptions of the project. However, it
is essential that at least one person be reasonably
familiar with all levels of the project, including
the system being modeled, the data sets available
for model building, and the basic formulation
procedures,

Make a Run of the Model

Initial runs of the model should be made at a fairly
early stage to evaluate the reasonableness of the
overall approach taken and to identify areas that
require or would respond most to additional
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efforts. To make a run of the model, someone who
knows the system well must assign initial values to
variables and assign values to the identified con-
stant. Scientists who have been involved in the
formulation of the model and end users of the
model are likely to provide the most reasonable
initial input values.

Evaluate Model Qutput

Once the earliest output of the model is obtained,
the process of improvement and refinement begins.
The first step, commonly referred to as ‘debugging’
involves checking that the computer code is work-
ing on the calculations which the programmers
intended it to work on according to the hypotheses
outlined by the project team. The next step is to
verify that the results of the simulation make sense
according to existing knowledge about the system,
e.g., that predicted yields fall within a reasonable
biological range or increase with increasing water
or nutrient availability. It is likely that several iter-
ative steps will be required before a reasonable
prediction is made by the model. If the results of
the simulation do not appear reasonable, there are
several possible options. Sets of initial values for
variables and constants can be tried to best des-
cribe the conditions of simulation. If no set pro-
duces a reasonable result, then the formulation of
the project hypotheses should be examined. Per-
haps inappropriate equation forms were used to
describe the data. Some of the variables may need
to be limited to a specific range of values (e.g., 0.0
< x < 1.0) so that an equation may make physical
or biological sense. Inadequate data may have
been used to describe the process of interest. Field
or controlled-environment experiments may have
to be designed to collect the necessary data to
describe certain relationships needed in the model.

The model predictions should be compared to
independent field data to validate the predictions.
A sensitivity analysis should be made to determine
the degree of accuracy necessary in the input varia-
bles. If change in an input variable results in large
changes in the model prediction, then that variable
must be measured accurately. In models with many
subroutines, each important relationship may need
to be validated separately so that the model may
reasonably predict the performance of the crucial
processes.

If all the relationships taken separately seem
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reasonable, and the model still fails to produce
reasonable results, the hypotheses and assump-
tions under which the project is being conducted,
or even the overall objectives of the project, should
be reexamined and restated if necessary. Although
the early evaluation processes may be carried out
by programmers and technical people, in the later
evaluations, the entire team must be involved.

Summarize the Project Results

Once the model is performing at the level that was
originally specified in the objectives, the necessary
simulation analysis should be conducted, summar-
ized, and communicated to the end user.

Using Existing Models in Systems
Analysis

Needless to say, the above process is time consum-
ing and a considerable amount of expertise and
resources are necessary to develop a model. When
possible, it would help to utilize an existing model
to accomplish a different set of objectives other
than those for which it was originaily written.
When using an existing model, a group should use
the same basic steps as described above, but the
procedure can often be expedited by using an exist-
ing model as outlined in Figure 6. Once the project
objectives are clearly defined, then one or more
models should be identified that may be suitable
for use in the simulation. The next step is to ana-
lyze each model in question quite thoroughly.
First the assumptions and hypotheses that are
incorporated into the model should be identified to
make sure they do not limit the model from the
application in question. It is important to analyze
all the assumptions incorporated in all the subrou-
tines before using the model. This procedure is
greatly facilitated by communication with the
developer of the model. Sometimes, well written
documentation of the model is available, but this is
the exception rather than the rule. Certain parts of
most models are much better documented than
others. In some cases, documentation may des-
cribe earlier versions of the model that have since
been modified, sometimes extensively. If most
components of a model seem acceptable for the
desired application but a few assumptions or hypo-
theses seem inappropriate or wrong, then modifi-
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Figure 6. Schematic diagram of systems analysis
using existing models.

cation of certain subunits of the model may be
possible without developing a new model. Dan-
neker (1984) discussed in some detail the evalua-
tion of two published models—an empirical, re-
gression based model (Hodges and Kanemasu
1977) and an intermediate level model (de Wit et al.
1978)—for use in yield prediction programs and
climate-yield potential analysis. He was not satis-
fied with predictions of either model, so in order to
use one of them, he would be required to reevaluate
the assumptions built into the models. In this case,
the tested models could not be used ‘off the shelf’,
but improvement of the existing models might save
a lot of time compared to developing an entirely
new model for the desired application.

By the time a model is published and distributed
to other users, the developers almost certainly will
have verified that it performs reasonably well, i.c.,
it provides plausible answers. However, before the
model is used for other applications, its perfor-
mance should be evaluated using independent data
sets, 1.e., data sets that were not used in the model
development or calibration procedure. The valida-
tion data sets should cover a wide range of condi-
tions to ensure stable model performance as was
illustrated by Slabbers et al. (1979). With interme-
diate to complex models, validation of the sub-
components rather than validation of the entire
model is often necessary (Bell 1981).

In another type of model evaluation, a sensitive
analysis of the input variables needs to be done to
know how sensitive the model is to a particular
input variable in order to evaluate the quality of
the input data required for simulation work. Ter-
jung et al. (1982) describe a sensitivity analysis of
the input variables to an evapotranspiration model.

The model developers or an independent group
may have already conducted validation tests on the
model. If not, this should be done before the model
is utilized for simulation work. In most cases, the
model must provide not only a plausible, but a
reasonably accurate answer. The validation pro-
cess defines the confidence with which you can
accept the accuracy of the answers provided by the
model.

When using a properly validated model, simula-
tion analysis can progress fairly quickly to the
stage of making the initial runs. At this point, the
performance of the model is evaluated, and through
an iterative procedure, the initial input values and
formulation of the hypotheses are modified, if
necessary. Satisfactory performance of the model
should be expected relatively quickly. The project
team can then complete its simulation, and report
the results to the end user.

Data Requirements and Availability

In order for any type of model to contribute to an
agricultural research or development project, it is
essential that good data sets be available. Histori-
cal data sets are essential for model development
and validation. Ongoing data collection is essential
for model improvement and operational programs
where prediction of current or future production is
desired.
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Development of large-scale, statistical models
requires data collected over long periods of time
and from many locations. These types of data are
seldom available in areas that have only recently
been developed for agricultural production. The
necessary agronomic data sets are seldom available
to model new agricultural production techniques
or strategies. Climatic data can be generated sto-
chastically using climate models such as those des-
cribed by Richardson (1981, 1982) to extend eva-
luation of management practices over long periods
of time. However generated climatic data cannot
be used for model development.

Complex models require a very technical, well-
funded research program to support their devel-
opment. Use of complex models requires detailed,
accurate, and precise input, so data sets must be
collected and monitored by highly trained techni-
cal staff and specialists. It is important for the
development of complex models to continue, but
they do not offer the potential for current applica-
tions. The models at this time are research-, not
applications-oriented, and the payoff for their
development may be far in the future.

Intermediate level models offer the combined
benefit of a manageable data requirement and a
greater level of transferability than simpler models.
Within the broad category of intermediate level
models, a wide range of model types is available for
different applications. Developing agricultural pro-
grams can take advantage of existing models by
concentrating on validation of models for the
desired applications and modification of existing
models, where necessary.
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