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                            ABSTRACT

Selected components of the water and energy balances at

the surface of a bare clay loam were measured at 57 locations

in a 1 ha field.  Spatial and temporal variability of these

components were also studied.  Components included

evaporation, irrigation, moisture storage, sensible heat flux

and long wave radiation.  Sub-studies were conducted on

irrigation uniformity under low pressure sprinklers; and, on

steel versus plastic microlysimeters (ML) of various lengths.

An energy balance model of evaporation, requiring minimal

inputs, was developed and validated giving an r2 value of

0.78.  Model improvements included an easy method of

accurately estimating soil surface temperature at many points

in a field, and an empirically fitted transfer coefficient

function for the sensible heat flux from the reference dry

soil.  The omission of soil heat flux and reflected shortwave

radiation terms was shown to reduce model accuracy.

Steel ML underestimated cumulative evaporation compared

to plastic ML at 20 and 30 cm lengths.  Cumulative evaporation

increased with ML length.  The 10 and 20 cm ML were too short

for use over multiple days but 30 cm ML may not be long enough

for extended periods.  Daily net soil heat flux for steel ML

averaged 44% higher than that for both plastic ML and

undisturbed field soil.
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Christiansen's uniformity coefficient (UCC) was close to

0.83 for each of 3 irrigations when measured by both catch

cans and by profile water contents.  But UCC for the change in

storage due to irrigation averaged only 0.43 indicating than

the high uniformity of profile water contents was more due to

surface and subsurface redistribution than to the uniformity

of application.

Profile water contents and catch can depths were time

invariant across at least 3 irrigations.  Midday soil surface

temperatures and daily evaporation were somewhat less time

invariant.  Variogram plots for evaporation and surface

temperature showed mostly random behavior.  Relative

variograms represented well the spatial variability of both

catch can depths and profile water contents.  A strong link

was demonstrated between the time invariance of a variable and

the usefulness of kriging on that variable.


